E-Bayesian Estimation of Chen Distribution Based on Type-I Censoring Scheme
Abstract
:1. Introduction
2. Bayesian Estimation
3. E-Bayesian Estimation Based on BSEL
3.1. E-Bayesian Estimate of the Parameter
3.2. E-Bayesian Estimation of the Reliability Function
3.3. E-Bayesian Estimation of the Hazard Rate Function
4. Properties of E-Bayesian Estimation Based on BSEL
- I.
- Relations among ():Proof. See Appendix A. □
- II.
- Relations among ():Proposition 2.Let , , and () are given by Equations (24)–(26), thenProof. See Appendix A. □From Equations (24)–(26), we haveThe integrals in Equations (24)–(26) cannot be computed analytically, therefore, it will be obtained numerically using the mathematical packages Maple.
- III.
- Relations among ():Proposition 3.Let , , and () are given by Equations (27)–(29), then
- (i)
- ;
- (ii)
- .
Proof. See Appendix A. □
5. Monte Carlo Simulation and Comparisons
- Determine the sample size , 50 or 100 and the parameters or (0.5, 1.5) and the type-I censoring time or 1.5;
- Determine the values , or 10 and ;
- The Bayesian and E-Bayesian estimates are calculated by using two types of priors:
- Prior I: ;
- Prior II: ;
- For given sample size n and censoring time , generate from, where is uniform , and consider only , where ;
- Under the BSEL function, the estimates and , are computed at from Equations (16) and (24)–(26), respectively;
- Under the BSEL function, the estimates and , are computed at from Equations (18) and (27)–(29), respectively.
- Repeat Steps 4–7 10,000 times. The average estimates (AEs) and the mean squared errors (MSEs) of the 10,000 of estimates under different settings are calculated and summarized.
- (1)
- The differences between AEs and the true value, and the MSEs of the different estimates decrease as n increases.
- (2)
- The differences between AEs and the true value, and the MSEs of the different estimates decrease as s increases.
- (3)
- The differences between AEs and the true value, and the MSEs of the different estimates in Prior I are less than Prior II.
- (4)
- The E-Bayesian estimates of perform better than Bayesian estimates in terms of minimum MSE.
- (5)
- The E-Bayesian estimates of have the minimum MSE among all other estimates.
- (6)
- The E-Bayesian estimates of based on BSEL loss function with prior distribution have the minimum MSE comparing with all other estimates.
6. Real Data Analysis
7. Concluding Remarks
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
- (i)
- From Equations (27)–(29), we have
- (ii)
- From Equations (A2) and (A3), we getThus, the proof is complete. □
References
- Xie, M.; Tang, Y.; Goh, T.N. A modified Weibull extension with bathtub-shaped failure rate function. Reliab. Eng. Syst. Saf. 2002, 76, 279–285. [Google Scholar] [CrossRef]
- Lai, C.D.; Xie, M.; Murthy, D.N.P. A modified Weibull distribution. IEEE Trans. Reliab. 2003, 52, 33–37. [Google Scholar] [CrossRef] [Green Version]
- Nassar, M.; Alzaatreh, A.; Mead, M.; Abo-Kasem, O. Alpha Power Weibull Distribution: Properties and Applications. Commun. Stat.-Theory And Methods 2017, 46, 10236–10252. [Google Scholar] [CrossRef]
- Nassar, M.; Afify, A.Z.; Dey, S.; Kumar, D. A new extension of Weibull distribution: Properties and different methods of estimation. J. Comput. Appl. Math. 2018, 336, 439–457. [Google Scholar] [CrossRef]
- Rastogi, M.K.; Tripathi, Y.M.; Wu, S.J. Estimating the parameters of a bathtub-shaped distribution under progressive type-II censoring. J. Appl. Stat. 2012, 39, 2389–2411. [Google Scholar] [CrossRef]
- Chen, Z. A new two-parameter lifetime distribution with bathtub shape or increasing failure rate function. Stat. Probabil Lett. 2000, 49, 155–161. [Google Scholar] [CrossRef]
- Wu, S.J. Estimation of the two parameter bathtub-shaped lifetime distribution with progressive censoring. J. Appl. Stat. 2008, 35, 1139–1150. [Google Scholar] [CrossRef]
- Ahmed, E.A. Bayesian estimation based on progressive Type-II censoring from two-parameter bathtub-shaped lifetime model: an Markov chain Monte Carlo approach. J. Appl. Stat. 2014, 41, 752–768. [Google Scholar] [CrossRef]
- Kayal, T.; Tripathi, M.; Singh, D.; Rastogi, M. Estimation and prediction for Chen distribution with bathtub shape under progressive censoring. J. Stat. Comput. Simul. 2017, 87, 348–366. [Google Scholar] [CrossRef]
- Ahmadi, J.; Jozani, M.J.; Marchand, E.; Parsian, A. Bayes estimation based on k-record data from a general class of distributions under balanced type loss functions. J. Stat. Plan. Infer. 2009, 139, 1180–1189. [Google Scholar] [CrossRef]
- Han, M. The structure of hierarchical prior distribution and its applications. Chin. Oper. Res. Manag. Sci. 1997, 6, 31–40. [Google Scholar]
- Han, M. E-Bayesian estimation and hierarchical Bayesian estimation of failure rate. Appl. Math. Model. 2009, 33, 1915–1922. [Google Scholar] [CrossRef]
- Jaheen, Z.F.; Okasha, H.M. E-Bayesian estimation for the Burr type XII model based on type-2 censoring. Appl. Math. Model. 2011, 35, 4730–4737. [Google Scholar] [CrossRef]
- Okasha, H.M. E-Bayesian Estimation of System Reliability with Weibull Distribution Based on Type-2 Censoring. J. Adv. Res. Sci. Comput. 2012, 4, 33–45. [Google Scholar]
- Okasha, H.M. E-Bayesian estimation for the Lomax distribution based on type-II censored data. J. Egypt. Math. Soc. 2014, 22, 489–495. [Google Scholar] [CrossRef] [Green Version]
- Okasha, H.M. Estimation for the Exponential Model Based on Record Statistic. J. Stat. Theory Appl. 2019, 18, 236–243. [Google Scholar]
- Okasha, H.M.; Wang, J. E-Bayesian estimation for the geometric model based on record statistics. Appl. Math. Model. 2016, 40, 658–670. [Google Scholar] [CrossRef]
- Ming, M. The E-Bayesian and hierarchical Bayesian estimations of Pareto distribution parameter under different loss functions. J. Stat. Comput. Simul. 2017, 87, 577–593. [Google Scholar]
- Gradshteyn, I.S.; Ryzhik, I.M. Tables of Integrals, Series and Products (Corrected and Enlarged Edition); Academic Press: San Diego, CA, USA, 1980; pp. 96–99. [Google Scholar]
- Hand, D.J.; Daly, F.; Lunn, A.D.; McConway, K.J. A Handbook of Small Data Sets; Chapman & Hall: London, UK, 1994. [Google Scholar]
- Kayal, T.; Tripathi, Y.M.; Kundu, D.; Rastogi, M. Statistical inference of Chen distribution based on Type-I progressive hybrid censored samples. Stat. Optim. Inf. Comput. 2019. Available online: https://pdfs.semanticscholar.org/4d38/8e0ea99ca778493acefd31eb146ee50ca619.pdf (accessed on 3 June 2020).
n | Par | Prior I | Prior II | |||||||
---|---|---|---|---|---|---|---|---|---|---|
BS | EBS1 | EBS2 | EBS3 | BS | EBS1 | EBS2 | EBS3 | |||
, | ||||||||||
20 | 0.4116 | 0.4428 | 0.4196 | 0.4203 | 0.4188 | 0.4401 | 0.4222 | 0.4229 | 0.4214 | |
0.0133 | 0.0154 | 0.0136 | 0.0137 | 0.0137 | 0.0141 | 0.0126 | 0.0127 | 0.0125 | ||
R | 0.7294 | 0.7121 | 0.7268 | 0.7264 | 0.7272 | 0.7133 | 0.7251 | 0.7247 | 0.7255 | |
0.0040 | 0.0043 | 0.0039 | 0.0039 | 0.0039 | 0.0040 | 0.0036 | 0.0036 | 0.0036 | ||
h | 0.6718 | 0.7226 | 0.6848 | 0.6860 | 0.6836 | 0.7183 | 0.6890 | 0.6902 | 0.6878 | |
0.0353 | 0.0410 | 0.0363 | 0.0366 | 0.0360 | 0.0376 | 0.0336 | 0.0339 | 0.0333 | ||
50 | 0.4058 | 0.4185 | 0.4090 | 0.4093 | 0.4087 | 0.4191 | 0.4118 | 0.4121 | 0.4116 | |
0.0053 | 0.0056 | 0.0053 | 0.0053 | 0.0053 | 0.0056 | 0.0053 | 0.0053 | 0.0053 | ||
R | 0.7310 | 0.7238 | 0.7299 | 0.7298 | 0.7301 | 0.7235 | 0.7283 | 0.7282 | 0.7285 | |
0.0016 | 0.0017 | 0.0016 | 0.0016 | 0.0016 | 0.0017 | 0.0016 | 0.0016 | 0.0016 | ||
h | 0.6623 | 0.6830 | 0.6675 | 0.6680 | 0.6671 | 0.6839 | 0.6721 | 0.6726 | 0.6717 | |
0.0140 | 0.0150 | 0.0142 | 0.0142 | 0.0141 | 0.0148 | 0.0141 | 0.0141 | 0.0140 | ||
100 | 0.4018 | 0.4082 | 0.4034 | 0.4036 | 0.4033 | 0.4083 | 0.4047 | 0.4048 | 0.4045 | |
0.0022 | 0.0023 | 0.0023 | 0.0023 | 0.0023 | 0.0024 | 0.0023 | 0.0023 | 0.0023 | ||
R | 0.7326 | 0.7290 | 0.7321 | 0.7320 | 0.7321 | 0.7290 | 0.7314 | 0.7313 | 0.7314 | |
0.0007 | 0.0007 | 0.0007 | 0.0007 | 0.0007 | 0.0007 | 0.0007 | 0.0007 | 0.0007 | ||
h | 0.6558 | 0.6662 | 0.6584 | 0.6587 | 0.6582 | 0.6663 | 0.6604 | 0.6607 | 0.6602 | |
0.0060 | 0.0062 | 0.0060 | 0.0060 | 0.0060 | 0.0063 | 0.0061 | 0.0061 | 0.0061 | ||
, | ||||||||||
20 | 0.4108 | 0.4419 | 0.3834 | 0.3948 | 0.3721 | 0.4421 | 0.3394 | 0.3623 | 0.3165 | |
0.0137 | 0.0157 | 0.0108 | 0.0115 | 0.0104 | 0.0161 | 0.0111 | 0.0103 | 0.0131 | ||
R | 0.7300 | 0.7127 | 0.7467 | 0.7403 | 0.7530 | 0.7126 | 0.7725 | 0.7590 | 0.7859 | |
0.0041 | 0.0044 | 0.0035 | 0.0036 | 0.0035 | 0.0045 | 0.0040 | 0.0035 | 0.0049 | ||
h | 0.6704 | 0.7211 | 0.6258 | 0.6444 | 0.6072 | 0.7215 | 0.5539 | 0.5912 | 0.5166 | |
0.0364 | 0.0419 | 0.0287 | 0.0306 | 0.0277 | 0.0430 | 0.0295 | 0.0273 | 0.0348 | ||
50 | 0.4040 | 0.4167 | 0.3924 | 0.3974 | 0.3874 | 0.4120 | 0.3651 | 0.3773 | 0.3529 | |
0.0046 | 0.0050 | 0.0042 | 0.0043 | 0.0042 | 0.0047 | 0.0046 | 0.0042 | 0.0053 | ||
R | 0.7319 | 0.7248 | 0.7391 | 0.7363 | 0.7419 | 0.7274 | 0.7549 | 0.7478 | 0.7620 | |
0.0015 | 0.0015 | 0.0014 | 0.0014 | 0.0014 | 0.0015 | 0.0016 | 0.0014 | 0.0019 | ||
h | 0.6593 | 0.6800 | 0.6404 | 0.6486 | 0.6323 | 0.6724 | 0.5958 | 0.6157 | 0.5760 | |
0.0123 | 0.0132 | 0.0112 | 0.0115 | 0.0111 | 0.0126 | 0.0122 | 0.0112 | 0.0141 | ||
100 | 0.4009 | 0.4073 | 0.3951 | 0.3977 | 0.3925 | 0.4068 | 0.3815 | 0.3885 | 0.3746 | |
0.0023 | 0.0024 | 0.0022 | 0.0022 | 0.0022 | 0.0023 | 0.0022 | 0.0021 | 0.0024 | ||
R | 0.7331 | 0.7295 | 0.7368 | 0.7353 | 0.7383 | 0.7298 | 0.7446 | 0.7406 | 0.7486 | |
0.0007 | 0.0008 | 0.0007 | 0.0007 | 0.0007 | 0.0007 | 0.0008 | 0.0007 | 0.0008 | ||
h | 0.6544 | 0.6648 | 0.6448 | 0.6490 | 0.6406 | 0.6639 | 0.6227 | 0.6340 | 0.6113 | |
0.0061 | 0.0063 | 0.0059 | 0.0059 | 0.0059 | 0.0061 | 0.0059 | 0.0057 | 0.0065 |
n | Par | Prior I | Prior II | |||||||
---|---|---|---|---|---|---|---|---|---|---|
BS | EBS1 | EBS2 | EBS3 | BS | EBS1 | EBS2 | EBS3 | |||
, | ||||||||||
20 | 0.5165 | 0.5440 | 0.5235 | 0.5244 | 0.5226 | 0.5493 | 0.5326 | 0.5335 | 0.5317 | |
0.0163 | 0.0186 | 0.0167 | 0.0169 | 0.0166 | 0.0184 | 0.0164 | 0.0166 | 0.0163 | ||
R | 0.8044 | 0.7951 | 0.8028 | 0.8025 | 0.8031 | 0.7933 | 0.7997 | 0.7994 | 0.8000 | |
0.0018 | 0.0020 | 0.0018 | 0.0018 | 0.0018 | 0.0020 | 0.0018 | 0.0018 | 0.0017 | ||
h | 0.7802 | 0.8217 | 0.7908 | 0.7921 | 0.7895 | 0.8297 | 0.8045 | 0.8059 | 0.8032 | |
0.0371 | 0.0424 | 0.0382 | 0.0385 | 0.0378 | 0.0420 | 0.0375 | 0.0378 | 0.0371 | ||
50 | 0.5103 | 0.5215 | 0.5131 | 0.5135 | 0.5128 | 0.5201 | 0.5135 | 0.5138 | 0.5131 | |
0.0061 | 0.0066 | 0.0062 | 0.0063 | 0.0062 | 0.0066 | 0.0063 | 0.0063 | 0.0063 | ||
R | 0.8058 | 0.8020 | 0.8052 | 0.8050 | 0.8053 | 0.8025 | 0.8050 | 0.8049 | 0.8052 | |
0.0007 | 0.0007 | 0.0007 | 0.0007 | 0.0007 | 0.0008 | 0.0007 | 0.0007 | 0.0007 | ||
h | 0.7708 | 0.7877 | 0.7751 | 0.7756 | 0.7746 | 0.7856 | 0.7756 | 0.7761 | 0.7751 | |
0.0140 | 0.0151 | 0.0142 | 0.0143 | 0.0142 | 0.0152 | 0.0144 | 0.0145 | 0.0144 | ||
100 | 0.5040 | 0.5096 | 0.5054 | 0.5056 | 0.5052 | 0.5077 | 0.5044 | 0.5046 | 0.5042 | |
0.0026 | 0.0027 | 0.0026 | 0.0026 | 0.0026 | 0.0029 | 0.0029 | 0.0029 | 0.0029 | ||
R | 0.8077 | 0.8058 | 0.8074 | 0.8073 | 0.8075 | 0.8065 | 0.8078 | 0.8077 | 0.8078 | |
0.0003 | 0.0003 | 0.0003 | 0.0003 | 0.0003 | 0.0003 | 0.0003 | 0.0003 | 0.0003 | ||
h | 0.7613 | 0.7698 | 0.7634 | 0.7637 | 0.7632 | 0.7669 | 0.7619 | 0.7622 | 0.7617 | |
0.0060 | 0.0062 | 0.0060 | 0.0060 | 0.0060 | 0.0067 | 0.0065 | 0.0065 | 0.0065 | ||
, | ||||||||||
20 | 0.4140 | 0.4453 | 0.3863 | 0.3979 | 0.3748 | 0.4427 | 0.3887 | 0.4004 | 0.3771 | |
0.0139 | 0.0161 | 0.0108 | 0.0116 | 0.0103 | 0.0150 | 0.0099 | 0.0107 | 0.0095 | ||
R | 0.7281 | 0.7108 | 0.7451 | 0.7387 | 0.7515 | 0.7120 | 0.7435 | 0.7370 | 0.7499 | |
0.0041 | 0.0045 | 0.0034 | 0.0035 | 0.0034 | 0.0042 | 0.0032 | 0.0033 | 0.0031 | ||
h | 0.6757 | 0.7268 | 0.6305 | 0.6493 | 0.6117 | 0.7226 | 0.6345 | 0.6534 | 0.6155 | |
0.0370 | 0.0430 | 0.0287 | 0.0308 | 0.0275 | 0.0399 | 0.0264 | 0.0284 | 0.0253 | ||
50 | 0.4024 | 0.4151 | 0.3910 | 0.3960 | 0.3860 | 0.4119 | 0.3901 | 0.3951 | 0.3852 | |
0.0045 | 0.0048 | 0.0042 | 0.0042 | 0.0041 | 0.0049 | 0.0043 | 0.0044 | 0.0042 | ||
R | 0.7328 | 0.7256 | 0.7399 | 0.7371 | 0.7427 | 0.7274 | 0.7404 | 0.7376 | 0.7432 | |
0.0014 | 0.0015 | 0.0014 | 0.0014 | 0.0014 | 0.0015 | 0.0014 | 0.0014 | 0.0014 | ||
h | 0.6568 | 0.6775 | 0.6381 | 0.6462 | 0.6300 | 0.6723 | 0.6367 | 0.6448 | 0.6286 | |
0.0121 | 0.0128 | 0.0111 | 0.0113 | 0.0110 | 0.0130 | 0.0114 | 0.0116 | 0.0113 | ||
100 | 0.4035 | 0.4099 | 0.3976 | 0.4002 | 0.3950 | 0.4087 | 0.3976 | 0.4002 | 0.3950 | |
0.0024 | 0.0025 | 0.0022 | 0.0023 | 0.0022 | 0.0025 | 0.0022 | 0.0023 | 0.0022 | ||
R | 0.7317 | 0.7281 | 0.7354 | 0.7339 | 0.7368 | 0.7287 | 0.7354 | 0.7339 | 0.7368 | |
0.0008 | 0.0008 | 0.0007 | 0.0007 | 0.0007 | 0.0008 | 0.0007 | 0.0007 | 0.0007 | ||
h | 0.6586 | 0.6690 | 0.6489 | 0.6531 | 0.6447 | 0.6671 | 0.6489 | 0.6531 | 0.6447 | |
0.0063 | 0.0066 | 0.0060 | 0.0061 | 0.0059 | 0.0065 | 0.0060 | 0.0061 | 0.0059 |
n | Par | Prior I | Prior II | |||||||
---|---|---|---|---|---|---|---|---|---|---|
BS | EBS1 | EBS2 | EBS3 | BS | EBS1 | EBS2 | EBS3 | |||
, | ||||||||||
20 | 0.4181 | 0.4417 | 0.4241 | 0.4247 | 0.4235 | 0.4384 | 0.4247 | 0.4253 | 0.4242 | |
0.0102 | 0.0122 | 0.0106 | 0.0107 | 0.0105 | 0.0125 | 0.0111 | 0.0112 | 0.0111 | ||
R | 0.7250 | 0.7120 | 0.7231 | 0.7228 | 0.7234 | 0.7140 | 0.7229 | 0.7226 | 0.7232 | |
0.0030 | 0.0034 | 0.0030 | 0.0030 | 0.0030 | 0.0035 | 0.0031 | 0.0032 | 0.0031 | ||
h | 0.6824 | 0.7209 | 0.6922 | 0.6931 | 0.6912 | 0.7155 | 0.6932 | 0.6941 | 0.6923 | |
0.0271 | 0.0324 | 0.0282 | 0.0284 | 0.0280 | 0.0332 | 0.0297 | 0.0299 | 0.0294 | ||
50 | 0.4082 | 0.4178 | 0.4106 | 0.4109 | 0.4104 | 0.4137 | 0.4083 | 0.4086 | 0.4081 | |
0.0037 | 0.0040 | 0.0037 | 0.0038 | 0.0037 | 0.0039 | 0.0037 | 0.0037 | 0.0037 | ||
R | 0.7293 | 0.7239 | 0.7285 | 0.7284 | 0.7286 | 0.7262 | 0.7298 | 0.7296 | 0.7299 | |
0.0011 | 0.0012 | 0.0011 | 0.0012 | 0.0011 | 0.0012 | 0.0011 | 0.0011 | 0.0011 | ||
h | 0.6663 | 0.6818 | 0.6702 | 0.6705 | 0.6698 | 0.6752 | 0.6664 | 0.6668 | 0.6661 | |
0.0098 | 0.0107 | 0.0100 | 0.0100 | 0.0099 | 0.0104 | 0.0099 | 0.0099 | 0.0098 | ||
100 | 0.4030 | 0.4077 | 0.4042 | 0.4043 | 0.4041 | 0.4065 | 0.4038 | 0.4039 | 0.4037 | |
0.0018 | 0.0019 | 0.0018 | 0.0018 | 0.0018 | 0.0018 | 0.0018 | 0.0018 | 0.0018 | ||
R | 0.7319 | 0.7292 | 0.7314 | 0.7314 | 0.7315 | 0.7299 | 0.7317 | 0.7316 | 0.7317 | |
0.0006 | 0.0006 | 0.0006 | 0.0006 | 0.0006 | 0.0006 | 0.0006 | 0.0006 | 0.0006 | ||
h | 0.6577 | 0.6655 | 0.6596 | 0.6598 | 0.6595 | 0.6634 | 0.6590 | 0.6591 | 0.6588 | |
0.0047 | 0.0049 | 0.0048 | 0.0048 | 0.0048 | 0.0048 | 0.0047 | 0.0047 | 0.0047 | ||
, | ||||||||||
20 | 0.4205 | 0.4442 | 0.3979 | 0.4073 | 0.3885 | 0.4376 | 0.3958 | 0.4051 | 0.3865 | |
0.0111 | 0.0132 | 0.0083 | 0.0091 | 0.0078 | 0.0120 | 0.0078 | 0.0085 | 0.0073 | ||
R | 0.7238 | 0.7108 | 0.7376 | 0.7324 | 0.7428 | 0.7143 | 0.7386 | 0.7335 | 0.7438 | |
0.0032 | 0.0037 | 0.0026 | 0.0027 | 0.0025 | 0.0034 | 0.0024 | 0.0026 | 0.0023 | ||
h | 0.6863 | 0.7250 | 0.6494 | 0.6647 | 0.6340 | 0.7143 | 0.6459 | 0.6611 | 0.6308 | |
0.0295 | 0.0352 | 0.0222 | 0.0243 | 0.0207 | 0.0319 | 0.0208 | 0.0227 | 0.0195 | ||
50 | 0.4051 | 0.4146 | 0.3962 | 0.4001 | 0.3924 | 0.4135 | 0.3968 | 0.4007 | 0.3930 | |
0.0035 | 0.0038 | 0.0032 | 0.0033 | 0.0031 | 0.0039 | 0.0033 | 0.0034 | 0.0032 | ||
R | 0.7310 | 0.7257 | 0.7365 | 0.7344 | 0.7387 | 0.7263 | 0.7362 | 0.7340 | 0.7384 | |
0.0011 | 0.0012 | 0.0010 | 0.0010 | 0.0010 | 0.0012 | 0.0011 | 0.0011 | 0.0010 | ||
h | 0.6611 | 0.6766 | 0.6467 | 0.6530 | 0.6404 | 0.6749 | 0.6477 | 0.6540 | 0.6414 | |
0.0094 | 0.0101 | 0.0085 | 0.0087 | 0.0083 | 0.0104 | 0.0088 | 0.0091 | 0.0086 | ||
100 | 0.4022 | 0.4070 | 0.3978 | 0.3997 | 0.3958 | 0.4074 | 0.3991 | 0.4010 | 0.3971 | |
0.0017 | 0.0018 | 0.0016 | 0.0016 | 0.0016 | 0.0020 | 0.0018 | 0.0018 | 0.0018 | ||
R | 0.7323 | 0.7296 | 0.7350 | 0.7339 | 0.7361 | 0.7294 | 0.7344 | 0.7332 | 0.7355 | |
0.0005 | 0.0006 | 0.0005 | 0.0005 | 0.0005 | 0.0006 | 0.0006 | 0.0006 | 0.0006 | ||
h | 0.6564 | 0.6642 | 0.6492 | 0.6524 | 0.6460 | 0.6649 | 0.6513 | 0.6545 | 0.6481 | |
0.0045 | 0.0047 | 0.0043 | 0.0044 | 0.0042 | 0.0052 | 0.0048 | 0.0049 | 0.0047 |
n | Par | Prior I | Prior II | |||||||
---|---|---|---|---|---|---|---|---|---|---|
BS | EBS1 | EBS2 | EBS3 | BS | EBS1 | EBS2 | EBS3 | |||
, | ||||||||||
20 | 0.5286 | 0.5545 | 0.5352 | 0.5361 | 0.5343 | 0.5548 | 0.5390 | 0.5399 | 0.5381 | |
0.0176 | 0.0206 | 0.0182 | 0.0184 | 0.0180 | 0.0207 | 0.0184 | 0.0186 | 0.0182 | ||
R | 0.8003 | 0.7917 | 0.7989 | 0.7986 | 0.7991 | 0.7916 | 0.7976 | 0.7973 | 0.7979 | |
0.0019 | 0.0022 | 0.0019 | 0.0019 | 0.0019 | 0.0022 | 0.0019 | 0.0019 | 0.0019 | ||
h | 0.7984 | 0.8376 | 0.8084 | 0.8097 | 0.8071 | 0.8380 | 0.8142 | 0.8155 | 0.8129 | |
0.0401 | 0.0470 | 0.0416 | 0.0420 | 0.0412 | 0.0471 | 0.0420 | 0.0424 | 0.0415 | ||
50 | 0.5054 | 0.5158 | 0.5080 | 0.5083 | 0.5077 | 0.5190 | 0.5129 | 0.5132 | 0.5125 | |
0.0048 | 0.0051 | 0.0049 | 0.0049 | 0.0048 | 0.0060 | 0.0057 | 0.0057 | 0.0057 | ||
R | 0.8074 | 0.8039 | 0.8068 | 0.8067 | 0.8069 | 0.8028 | 0.8052 | 0.8051 | 0.8053 | |
0.0006 | 0.0006 | 0.0006 | 00.0006 | 0.0006 | 0.0007 | 0.0006 | 0.0006 | 0.0006 | ||
h | 0.7634 | 0.7791 | 0.7674 | 0.7678 | 0.7669 | 0.7840 | 0.7747 | 0.7751 | 0.7742 | |
0.0109 | 0.0117 | 0.0111 | 0.0111 | 0.0110 | 0.0137 | 0.0130 | 0.0131 | 0.0130 | ||
100 | 0.5050 | 0.5103 | 0.5063 | 0.5065 | 0.5062 | 0.5087 | 0.5057 | 0.5058 | 0.5055 | |
0.0025 | 0.0026 | 0.0025 | 0.0025 | 0.0025 | 0.0025 | 0.0024 | 0.0024 | 0.0024 | ||
R | 0.8074 | 0.8056 | 0.8071 | 0.8070 | 0.8071 | 0.8061 | 0.8073 | 0.8072 | 0.8073 | |
0.0003 | 0.0003 | 0.0003 | 0.0003 | 0.0003 | 0.0003 | 0.0003 | 0.0003 | 0.0003 | ||
h | 0.7628 | 0.7708 | 0.7648 | 0.7651 | 0.7646 | 0.7684 | 0.7638 | 0.7640 | 0.7636 | |
0.0057 | 0.0059 | 0.0057 | 0.0057 | 0.0057 | 0.0057 | 0.0056 | 0.0056 | 0.0056 | ||
, | ||||||||||
20 | 0.5391 | 0.5654 | 0.5024 | 0.5165 | 0.4884 | 0.5452 | 0.4887 | 0.5020 | 0.4754 | |
0.0179 | 0.0215 | 0.0119 | 0.0136 | 0.0108 | 0.0178 | 0.0111 | 0.0121 | 0.0104 | ||
R | 0.7968 | 0.7880 | 0.8097 | 0.8049 | 0.8144 | 0.7947 | 0.8143 | 0.8098 | 0.8188 | |
0.0019 | 0.0023 | 0.0013 | 0.0015 | 0.0012 | 0.0019 | 0.0013 | 0.0014 | 0.0012 | ||
h | 0.8143 | 0.8540 | 0.7589 | 0.7802 | 0.7377 | 0.8235 | 0.7382 | 0.7583 | 0.7181 | |
0.0408 | 0.0490 | 0.0272 | 0.0309 | 0.0246 | 0.0406 | 0.0252 | 0.0277 | 0.0237 | ||
50 | 0.5120 | 0.5224 | 0.4979 | 0.5036 | 0.4921 | 0.5185 | 0.4957 | 0.5014 | 0.4901 | |
0.0062 | 0.0067 | 0.0053 | 0.0056 | 0.0051 | 0.0059 | 0.0048 | 0.0050 | 0.0046 | ||
R | 0.8053 | 0.8017 | 0.8103 | 0.8084 | 0.8122 | 0.8030 | 0.8110 | 0.8091 | 0.8129 | |
0.0007 | 0.0008 | 0.0006 | 0.0006 | 0.0006 | 0.0007 | 0.0006 | 0.0006 | 0.0005 | ||
h | 0.7733 | 0.7892 | 0.7520 | 0.7606 | 0.7434 | 0.7831 | 0.7488 | 0.7573 | 0.7402 | |
0.0140 | 0.0152 | 0.0121 | 0.0127 | 0.0117 | 0.0134 | 0.0109 | 0.0114 | 0.0106 | ||
100 | 0.5032 | 0.5085 | 0.4963 | 0.4992 | 0.4935 | 0.5116 | 0.5001 | 0.5030 | 0.4972 | |
0.0024 | 0.0025 | 0.0023 | 0.0023 | 0.0023 | 0.0026 | 0.0023 | 0.0024 | 0.0023 | ||
R | 0.8080 | 0.8062 | 0.8105 | 0.8095 | 0.8115 | 0.8051 | 0.8092 | 0.8082 | 0.8102 | |
0.0003 | 0.0003 | 0.0003 | 0.0003 | 0.0003 | 0.0003 | 0.0003 | 0.0003 | 0.0003 | ||
h | 0.7601 | 0.7680 | 0.7497 | 0.7540 | 0.7454 | 0.7727 | 0.7554 | 0.7598 | 0.7510 | |
0.0055 | 0.0057 | 0.0052 | 0.0053 | 0.0051 | 0.0060 | 0.0053 | 0.0054 | 0.0052 |
0.0350 | 0.0680 | 0.1000 | 0.1010 | 0.1670 | 0.1680 | 0.1970 | 0.2130 | 0.2330 | 0.2340 |
0.5080 | 0.5080 | 0.5330 | 0.6330 | 0.7670 | 0.7680 | 0.7700 | 1.0660 | 1.2670 | 1.3000 |
1.6000 | 1.6390 | 1.8030 | 1.8670 | 2.1800 | 2.6670 | 2.9670 | 3.3280 | 3.3930 | 3.7000 |
3.8030 | 4.3110 | 4.8670 | 5.1800 | 6.2330 | 6.3670 | 6.6000 | 6.6000 | 7.1800 | 7.6670 |
7.7330 | 7.8000 | 7.9330 | 7.9670 | 8.0160 | 8.3000 | 8.4100 | 8.6070 | 8.6670 | 8.8000 |
9.1000 | 9.2330 | 10.541 | 10.607 | 10.633 | 10.667 | 10.869 | 11.067 | 11.180 | 11.443 |
12.213 | 12.508 | 12.533 | 13.467 | 13.800 | 14.267 | 14.475 | 14.500 | 15.213 | 15.333 |
15.525 | 15.533 | 15.541 | 15.934 | 16.200 | 16.300 | 16.344 | 16.600 | 16.700 | 16.933 |
17.033 | 17.067 | 17.475 | 17.667 | 17.700 | 17.967 | 18.115 | 18.115 | 18.933 | 18.934 |
19.508 | 19.574 | 19.733 | 20.148 | 20.180 | 20.900 | 21.167 | 21.233 | 21.600 | 22.100 |
22.148 | 22.180 | 22.180 | 22.267 | 22.300 | 22.500 | 22.533 | 22.867 | 23.738 | 24.082 |
24.180 | 24.705 | 25.213 | 25.705 | 29.705 | 30.443 | 31.667 | 31.934 | 32.180 | 32.367 |
32.672 | 32.705 | 33.148 | 33.567 | 33.770 | 33.869 | 34.836 | 34.869 | 34.934 | 35.738 |
36.180 | 36.213 | 39.410 | 39.433 | 39.672 | 40.001 | 41.733 | 41.734 | 42.311 | 42.869 |
43.180 | 43.279 | 43.902 | 44.267 | 44.475 | 44.900 | 45.148 | 46.451 |
Par | MLEs | BS | EBS1 | EBS2 | EBS3 | |
---|---|---|---|---|---|---|
10 | 0.04267 | 0.04272 | 0.04311 | 0.04315 | 0.04307 | |
Approx. MSE | ||||||
R | 0.50036 | 0.49992 | 0.49838 | 0.49805 | 0.49871 | |
Approx. MSE | ||||||
h | 0.05389 | 0.05396 | 0.05445 | 0.05450 | 0.05440 | |
Approx. MSE | ||||||
20 | 0.04279 | 0.04282 | 0.04304 | 0.04306 | 0.04301 | |
Approx. MSE | ||||||
R | 0.49939 | 0.49914 | 0.49828 | 0.49809 | 0.49846 | |
Approx. MSE | ||||||
h | 0.05404 | 0.05408 | 0.05435 | 0.05438 | 0.05433 | |
Approx. MSE |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Algarni, A.; Almarashi, A.M.; Okasha, H.; Ng, H.K.T. E-Bayesian Estimation of Chen Distribution Based on Type-I Censoring Scheme. Entropy 2020, 22, 636. https://doi.org/10.3390/e22060636
Algarni A, Almarashi AM, Okasha H, Ng HKT. E-Bayesian Estimation of Chen Distribution Based on Type-I Censoring Scheme. Entropy. 2020; 22(6):636. https://doi.org/10.3390/e22060636
Chicago/Turabian StyleAlgarni, Ali, Abdullah M. Almarashi, Hassan Okasha, and Hon Keung Tony Ng. 2020. "E-Bayesian Estimation of Chen Distribution Based on Type-I Censoring Scheme" Entropy 22, no. 6: 636. https://doi.org/10.3390/e22060636
APA StyleAlgarni, A., Almarashi, A. M., Okasha, H., & Ng, H. K. T. (2020). E-Bayesian Estimation of Chen Distribution Based on Type-I Censoring Scheme. Entropy, 22(6), 636. https://doi.org/10.3390/e22060636