Two-Dimensional EspEn: A New Approach to Analyze Image Texture by Irregularity
Abstract
:1. Introduction
2. Shannon Entropy, SampEn2D, and EspEn Concepts
2.1. Shannon Entropy
2.2. SampEn2D Entropy
2.3. Espinosa Entropy Proposal (EspEn) for 2D
EspEn Algorithm for Two Dimensions
3. Materials and Methods
3.1. Set of Images
3.2. Experiment and Parameters
3.2.1. Computational Cost: Shannon Entropy, SampEn2D, and EspEn vs. Image Size
3.2.2. EspEn and Dependence on m, r, and ρ
EspEn and Dependence on the Length of the Square Window (m)
EspEn and Dependence on the Threshold of Similarity (r)
EspEn and Dependence on the Percentage of Acceptable Similarity (ρ)
3.2.3. EspEn (m, r, and ρ) Applied to Images from Normalized Brodatz’s Textures Database
4. Results and Discussion
4.1. Computational Cost
4.2. Shannon, SampEn2D, and EspEn Results (All Images)
4.3. EspEn Validation
4.3.1. Dependence of EspEn on the Length of the Square Window (m)
4.3.2. Dependence of EspEn with the Threshold of Similarity (r)
4.3.3. Dependence of EspEn with the Percentage of Acceptable Similarity (ρ)
4.4. Application of the EspEn Algorithm in the Images of Normalized Brodatz’s Texture Database
4.5. Summary Characteristics of EspEn (u, m, r, )
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sparavigna, A.C. Entropy in Image Analysis. Entropy 2019, 21, 502. [Google Scholar] [CrossRef] [Green Version]
- Prabaharan, T.; Periasamy, P.; Mugendiran, V.; Ramanan. Studies on application of image processing in various fields: An overview. IOP Conf. Ser. Mater. Sci. Eng. 2020, 961, 012006. [Google Scholar] [CrossRef]
- Humeau-Heurtier, A. Texture Feature Extraction Methods: A Survey. IEEE Access 2019, 7, 8975–9000. [Google Scholar] [CrossRef]
- Hung, C.C.; Song, E.; Lan, Y. Image Texture Analysis: Foundations, Models and Algorithms, 1st ed.; Springer Nature: Cham, Switzerland, 2019. [Google Scholar] [CrossRef]
- Nixon, A.S.; Aguado, A.S. Feature Extraction & Image Processing for Computer Vision, 3rd ed.; Academic Press: London, UK, 2012. [Google Scholar] [CrossRef]
- Fadaei, S.; Amirfattahi, R.; Ahmadzadeh, M.R. Local derivative radial patterns: A new texture descriptor for content-based image retrieval. Signal Process. 2017, 137, 274–286. [Google Scholar] [CrossRef]
- Zhu, Z.; You, X.; Yu, S.; Zou, J.; Zhao, H. Dynamic texture modeling and synthesis using multi-kernel Gaussian process dynamic model. Signal Process. 2016, 124, 63–71. [Google Scholar] [CrossRef]
- De Mesquita Sa, J.J., Jr.; Cortez, P.C.; Backes, A.R. Color texture classification using shortest paths in graphs. IEEE Trans. Image Process. 2014, 23, 3751–3761. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.Y.; Su, H.; Huang, Q.; Guibas, L.; Mitra, N. Unsupervised texture transfer from images to model collections. ACM Trans. Graph 2016, 35, 1–13. [Google Scholar] [CrossRef]
- Armi, L.; Fekri-Ershad, S. Texture image analysis and texture classification methods-A review. Int. Online J. Image Process. Pattern Recognit. 2019, 2, 1–29. [Google Scholar]
- Depeursinge, A.; Al-Kadi, O.S.; Mitchell, J.R. Biomedical Texture Analysis: Fundamentals, Tools and Challenges, 1st ed.; Mara Conner-Academic Press: Cambridge, MA, USA, 2017; ISBN 9780128123218. [Google Scholar]
- Chatterjee, S.; Dey, D.; Munshi, S. Optimal selection of features using wavelet fractal descriptors and automatic correlation bias reduction for classifying skin lesions. Biomed. Signal Process. Control 2018, 40, 252–262. [Google Scholar] [CrossRef]
- Breslavets, A.; Breslavets, M.; Shear, N.H. Quantification of randomness (Entropy) as a clinical tool to assess the severity of skin disease. Med. Hypotheses 2019, 132, 109311. [Google Scholar] [CrossRef]
- Elshaikh, B.G.; Garelnabi, M.E.M.; Omer, H.; Sulieman, A.; Habeeballa, B.; Tabeidi, R.S. Recognition of brain tumors in MRI images using texture analysis. Saudi J. Biol. Sci. 2021, 28, 2381–2387. [Google Scholar] [CrossRef] [PubMed]
- Nardi, C.; Tomei, M.; Pietragalla, M.; Calistri, L.; Landini, N.; Bonomo, P.; Mannelli, G.; Mungai, F.; Bonasera, L.; Colagrande, S. Texture analysis in the characterization of parotid salivary gland lesions: A study on MR diffusion weighted imaging. Eur. J. Radiol. 2021, 136, 109529. [Google Scholar] [CrossRef] [PubMed]
- Costa, A.L.F.; De Souza Carreira, B.; Fardim, K.A.C.; Nussi, A.D.; Da Silva Lima, V.C.; Miguel, M.M.V.; Jardini, M.A.N.; Santamaria, M.P.; De Castro Lopes, S.L.P. Texture analysis of cone beam computed tomography images reveals dental implant stability. Int. J. Oral. Maxillofac. Surg. 2021, 1–8. [Google Scholar] [CrossRef]
- Haralick, R.M. Statistical and Structural Approaches to Texture. Proc. IEEE 1979, 67, 786–804. [Google Scholar] [CrossRef]
- Cagnoni, S. Evolutionary Image Analysis and Signal Processing, 10th ed.; Springer: Berlin/Heidelberg, Germany, 2009; pp. 6–8. [Google Scholar] [CrossRef]
- Mryka, H.-B. A Tutorial v. 3.0 March 2017; University of Calgary: Calgary, AL, Canada, 2017. [Google Scholar] [CrossRef]
- Haralick, R.M.; Shanmugam, K.; Dinstein, I. Textural Features for Image Classification. IEEE Trans. Syst. Man Cybern. Syst. 1973, 6, 610–621. [Google Scholar] [CrossRef] [Green Version]
- Tsallis, C. Possible Generalization of Boltzmann-Gibbs Statistics. J. Stat. Phys. 1988, 52, 479–487. [Google Scholar] [CrossRef]
- Kapur, J.N.; Sahoo, P.K.; Wong, A.K.C. A New Method for Gray-Level Picture Thresholding Using the Entropy of the Histogram. Comput. Gr. Image Process. 1985, 29, 273–285. [Google Scholar] [CrossRef]
- Da Silva, L.E.; Senra Filho, A.C.; Fazan, V.P.; Felipe, J.C.; Murta, L.O., Jr. Two-dimensional sample entropy analysis of rat sural nerve aging. In Proceedings of the 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Chicago, IL, USA, 26–30 August 2014; pp. 3345–3348. [Google Scholar] [CrossRef]
- Da Silva, L.E.; Senra Filho, A.C.; Fazan, V.P.; Felipe, J.C.; Murta, L.O., Jr. Two-dimensional sample entropy: Assessing image texture through irregularity. Biomed. Phys. Eng. Express. 2016, 2, 1–11. [Google Scholar] [CrossRef]
- Shannon, C.E. A Mathematical Theory of Communication. Bell Syst. Tech. 1948, 27, 379–423. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.; Zhou, Y.; Saveriades, G.; Agaian, S.; Noonan, J.P.; Natarajan, P. Local Shannon entropy measure with statistical tests for image randomness. Inf. Sci. 2013, 222, 323–342. [Google Scholar] [CrossRef] [Green Version]
- Tsui, P.-H.; Wan, Y.-L. Effects of Fatty Infiltration of the Liver on the Shannon Entropy of Ultrasound Backscattered Signals. Entropy 2016, 18, 341. [Google Scholar] [CrossRef] [Green Version]
- Lin, Y.-H.; Liao, Y.-Y.; Yeh, C.-K.; Yang, K.-C.; Tsui, P.-H. Ultrasound Entropy Imaging of Nonalcoholic Fatty Liver Disease: Association with Metabolic Syndrome. Entropy 2018, 20, 893. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mello Román, J.C.; Vázquez Noguera, J.L.; Legal-Ayala, H.; Pinto-Roa, D.P.; Gomez-Guerrero, S.; García Torres, M. Entropy and Contrast Enhancement of Infrared Thermal Images Using the Multiscale Top-Hat Transform. Entropy 2019, 21, 244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huachun, W.; Jian, Z.; Chunhu, X.; Jiyang, Z.; Yiming, H. Two-dimensional time series sample entropy algorithm: Applications to rotor axis orbit feature identification. MSSP 2021, 147, 107123. [Google Scholar] [CrossRef]
- Da Silva Senra Filho, A.C.; Duque, J.J.; Silva, L.E.V.; Felipe, J.C.; Fazan, V.P.S.; Junior, L.O.M. Automatic Diabetes Detection from Histological Images of Rats Phrenic Nerve Using Two-Dimensional Sample Entropy. J. Med. Biol. Eng. 2019, 39, 70–75. [Google Scholar] [CrossRef]
- Kim, I. Multiscale Sample Entropy of Two-Dimensional Decaying Turbulence. Entropy 2021, 23, 245. [Google Scholar] [CrossRef]
- Hilal, M.; Berthin, C.; Martin, L.; Humeau-Heurtier, A. Skin Alterations in Pseudoxanthoma Elasticum Patients Highlighted by the Bi-Dimensional Sample Entropy Algorithm. In Proceedings of the 2018 International Conference BIOMDLORE, Bialystok, Poland, 28–30 June 2018; pp. 1–6. [Google Scholar] [CrossRef]
- Silva, L.E.V.; Duque, J.J.; Felipe, J.C.; Murta, L.O., Jr.; Humeau-Heurtier, A. Two-dimensional multiscale entropy analysis: Applications to image texture evaluation. Signal Process. 2018, 147, 224–232. [Google Scholar] [CrossRef]
- Abdelmounaime, S.; Dong-Chen, H. New Brodatz-based image databases for grayscale color and multiband texture analysis. Int. Sch. Res. Not. 2013, 2013, 1–14. [Google Scholar] [CrossRef]
- Pham, T.D. Measure of texture dynamics with fuzzy metric entropy. In Proceedings of the 12th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD), Zhangjiajie, China, 15–17 August 2015; pp. 385–390. [Google Scholar] [CrossRef]
- Zunino, L.; Ribeiro, H.V. Discriminating image textures with the multiscale two-dimensional complexity-entropy causality plane. Chaos Solitons Fractals 2016, 91, 679–688. [Google Scholar] [CrossRef] [Green Version]
p Significance | |||||
---|---|---|---|---|---|
MIX Pairwise Comparisons | m = 1 | m = 2 | m = 3 | m = 4 | m = 5 |
MIX(0)–MIX(0.33) | 0.260 | 0.392 | 0.108 | 0.085 | 0.023 |
MIX(0)–MIX(0.66) | 0.024 | 0.007 | 0.001 | 0.001 | 0.000 |
MIX(0)–MIX(1) | 0.000 | 0.000 | 0.000 | 0.000 | 0.023 |
MIX(0.33)–MIX(0.66) | 0.260 | 0.069 | 0.077 | 0.085 | -- |
MIX(0.33)–MIX(1) | 0.001 | 0.000 | 0.001 | 0.001 | -- |
MIX(0.66)–MIX(1) | 0.021 | 0.054 | 0.087 | 0.085 | -- |
p Significance | ||||||
---|---|---|---|---|---|---|
MIX Pairwise Comparisons | r = 5 | r = 15 | r = 25 | r = 35 | r = 45 | r = 55 |
MIX(0)–MIX(0.33) | 0.083 | 0.134 | 0.392 | 0.392 | 0.392 | 0.392 |
MIX(0)–MIX(0.66) | 0.000 | 0.001 | 0.003 | 0.003 | 0.007 | 0.007 |
MIX(0)–MIX(1) | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
MIX(0.33)–MIX(0.66) | 0.051 | 0.069 | 0.032 | 0.032 | 0.069 | 0.069 |
MIX(0.33)–MIX(1) | 0.001 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
MIX(0.66)–MIX(1) | 0.193 | 0.087 | 0.087 | 0.087 | 0.054 | 0.054 |
p Significance | ||||||
---|---|---|---|---|---|---|
MIX Pairwise Comparisons | ρ = 0.5 | ρ = 0.6 | ρ = 0.7 | ρ = 0.8 | ρ = 0.9 | ρ = 1 |
MIX(0)–MIX(0.33) | 0.454 | 0.392 | 0.108 | 0.087 | 0.085 | 0.085 |
MIX(0)–MIX(0.66) | 0.005 | 0.003 | 0.001 | 0.001 | 0.001 | 0.001 |
MIX(0)–MIX(1) | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
MIX(0.33)–MIX(0.66) | 0.042 | 0.032 | 0.077 | 0.087 | 0.085 | 0.085 |
MIX(0.33)–MIX(1) | 0.000 | 0.000 | 0.001 | 0.001 | 0.001 | 0.001 |
MIX(0.66)–MIX(1) | 0.069 | 0.087 | 0.087 | 0.087 | 0.085 | 0.085 |
Image | EspEn | Image | EspEn | Image | EspEn | Image | EspEn | Image | EspEn | Image | EspEn | Image | EspEn |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
D91 | 3.2809 | D61 | 5.6415 | D53 | 6.3611 | D20 | 6.7323 | D6 | 7.6567 | D100 | 8.3514 | D87 | 9.0954 |
D48 | 3.3013 | D89 | 5.6994 | D1 | 6.3648 | D71 | 6.7439 | D109 | 7.6722 | D19 | 8.3903 | D80 | 9.1871 |
D59 | 3.4067 | D25 | 5.7179 | D94 | 6.4086 | D70 | 6.9054 | D52 | 7.7059 | D78 | 8.4588 | D82 | 9.2503 |
D30 | 3.7778 | D51 | 5.7569 | D72 | 6.4134 | D63 | 6.9277 | D105 | 7.7110 | D104 | 8.4685 | D15 | 9.2758 |
D90 | 4.2005 | D75 | 5.8065 | D66 | 6.5300 | D73 | 6.9387 | D97 | 7.7605 | D85 | 8.4740 | D10 | 9.2975 |
D49 | 4.3454 | D46 | 5.8070 | D102 | 6.5414 | D96 | 6.9952 | D17 | 7.8667 | D54 | 8.4931 | D16 | 9.3094 |
D31 | 4.4261 | D23 | 5.8098 | D13 | 6.5729 | D74 | 7.0016 | D14 | 7.8877 | D5 | 8.5038 | D84 | 9.3123 |
D39 | 4.4927 | D34 | 5.9653 | D95 | 6.5874 | D65 | 7.0283 | D55 | 7.9221 | D28 | 8.5315 | D3 | 9.4322 |
D88 | 4.6406 | D47 | 5.9830 | D68 | 6.5995 | D45 | 7.0507 | D12 | 7.9348 | D22 | 8.6267 | D110 | 9.5855 |
D62 | 4.9174 | D43 | 5.9947 | D64 | 6.6246 | D37 | 7.1197 | D79 | 7.9453 | D81 | 8.6805 | D92 | 9.6326 |
D99 | 4.9702 | D56 | 6.0135 | D26 | 6.6279 | D18 | 7.2808 | D103 | 7.9758 | D83 | 8.6998 | D9 | 9.7136 |
D8 | 4.9785 | D7 | 6.1287 | D67 | 6.6363 | D40 | 7.2836 | D108 | 8.0863 | D36 | 8.7392 | D24 | 9.7185 |
D21 | 5.0191 | D2 | 6.2263 | D98 | 6.6713 | D106 | 7.3473 | D35 | 8.1938 | D41 | 8.8204 | D57 | 9.7451 |
D58 | 5.3044 | D50 | 6.2309 | D42 | 6.6808 | D107 | 7.4336 | D112 | 8.2544 | D93 | 8.8927 | D29 | 9.8173 |
D38 | 5.3089 | D69 | 6.2565 | D60 | 6.7170 | D76 | 7.4341 | D77 | 8.3207 | D111 | 9.0168 | D4 | 9.8291 |
D44 | 5.5531 | D27 | 6.2585 | D101 | 6.7309 | D86 | 7.4523 | D11 | 8.3302 | D33 | 9.0535 | D32 | 9.8896 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Espinosa, R.; Bailón, R.; Laguna, P. Two-Dimensional EspEn: A New Approach to Analyze Image Texture by Irregularity. Entropy 2021, 23, 1261. https://doi.org/10.3390/e23101261
Espinosa R, Bailón R, Laguna P. Two-Dimensional EspEn: A New Approach to Analyze Image Texture by Irregularity. Entropy. 2021; 23(10):1261. https://doi.org/10.3390/e23101261
Chicago/Turabian StyleEspinosa, Ricardo, Raquel Bailón, and Pablo Laguna. 2021. "Two-Dimensional EspEn: A New Approach to Analyze Image Texture by Irregularity" Entropy 23, no. 10: 1261. https://doi.org/10.3390/e23101261
APA StyleEspinosa, R., Bailón, R., & Laguna, P. (2021). Two-Dimensional EspEn: A New Approach to Analyze Image Texture by Irregularity. Entropy, 23(10), 1261. https://doi.org/10.3390/e23101261