Estimating Phase Amplitude Coupling between Neural Oscillations Based on Permutation and Entropy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Multiscale Permutation Mutual Information
2.2. Permutation Conditional Mutual Information
2.3. Symbolic Joint Entropy
2.4. Weighted-Permutation Mutual Information
2.5. Acquisition of Simulation Data
2.6. Calculating Phase–Amplitude Coupling
2.7. Parameter Choices in the Algorithm
2.8. Parameter Choice in MPMI
2.9. Parameter Choice in PCMI
3. Results
3.1. Dependence on Data Length
3.2. The Effects of Coupling Coefficient on Methods
3.3. The Effects of Noise on Methods
3.4. Detection of the Frequency Pairs with PAC
3.5. Sensibility to Spurious Coupling
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Colgin, L.L.; Denninger, T.; Fyhn, M.; Hafting, T.; Bonnevie, T.; Jensen, O.; Moser, M.B.; Moser, E.I. Frequency of gamma oscillations routes flow of information in the hippocampus. Nature 2009, 462, 353–357. [Google Scholar] [CrossRef]
- Hasselmo, M.E.; Stern, C.E. Theta rhythm and the encoding and retrieval of space and time. NeuroImage 2014, 85, 656–666. [Google Scholar] [CrossRef] [Green Version]
- Hülsemann, M.J.; Naumann, E.; Rasch, B. Quantification of Phase-Amplitude Coupling in Neuronal Oscillations: Comparison of Phase-Locking Value, Mean Vector Length, Modulation Index, and Generalized-Linear-Modeling-Cross-Frequency-Coupling. Front Neurosci. 2019, 13, 573. [Google Scholar] [CrossRef] [Green Version]
- Chen, D.; Tang, Y.; Zhang, H.; Wang, L.; Li, X. Incremental Factorization of Big Time Series Data with Blind Factor Approximation. IEEE Trans. Knowl. Data Eng. 2021, 33, 569–584. [Google Scholar] [CrossRef]
- Kopell, N.; Ermentrout, G.B.; Whittington, M.A.; Traub, R.D. Gamma rhythms and beta rhythms have different synchronization properties. Proc. Natl. Acad. Sci. USA 2000, 97, 1867–1872. [Google Scholar] [CrossRef] [Green Version]
- Xu, X.; An, L.; Mi, X.; Zhang, T. Impairment of Cognitive Function and Synaptic Plasticity Associated with Alteration of Information Flow in Theta and Gamma Oscillations in Melamine-Treated Rats. PLoS ONE 2013, 8, e77796. [Google Scholar] [CrossRef]
- Canolty, R.T.; Knight, R.T. The functional role of cross-frequency coupling. Trends Cogn. Sci. 2010, 14, 506–515. [Google Scholar] [CrossRef] [Green Version]
- Cohen, M.X.; Elger, C.E.; Fell, J. Oscillatory activity and phase-amplitude coupling in the human medial frontal cortex during decision making. J. Cogn. Neurosci. 2009, 21, 390–402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tort, A.; Komorowski, R.; Eichenbaum, H.; Kopell, N. Measuring Phase-Amplitude Coupling Between Neuronal Oscillations of Different Frequencies. J. Neurophysiol. 2010, 104, 1195–1210. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Gao, D.; Li, D.; Desroches, A.S.; Liu, L.; Li, X. Theta–gamma coupling reflects the interaction of bottom-up and top-down processes in speech perception in children. NeuroImage 2014, 102, 637–645. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Zheng, C.; Zhang, T. Reduction in LFP cross-frequency coupling between theta and gamma rhythms associated with impaired STP and LTP in a rat model of brain ischemia. Front Comput. Neurosci. 2013, 7, 27. [Google Scholar] [CrossRef] [Green Version]
- Belluscio, M.; Mizuseki, K.; Schmidt, R.; Kempter, R.; Buzsáki, G. Cross-Frequency Phase-Phase Coupling between Theta and Gamma Oscillations in the Hippocampus. J. Neurosci. Off. J. Soc. Neurosci. 2012, 32, 423–435. [Google Scholar] [CrossRef] [Green Version]
- Fell, J.; Axmacher, N. The role of phase synchronization in memory processes. Nat. Rev. Neurosci. 2011, 12, 105–118. [Google Scholar] [CrossRef] [PubMed]
- Friston, K.J. Another neural code? Neuroimage 1997, 5, 213–220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shirvalkar, P.R.; Rapp, P.R.; Shapiro, M.L. Bidirectional changes to hippocampal theta–gamma comodulation predict memory for recent spatial episodes. Proc. Natl. Acad. Sci. USA 2010, 107, 7054. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siegel, M.; Warden, M.R.; Miller, E.K. Phase-dependent neuronal coding of objects in short-term memory. Proc. Natl. Acad. Sci. USA 2009, 106, 21341. [Google Scholar] [CrossRef] [Green Version]
- Richter, C.G.; Babo-Rebelo, M.; Schwartz, D.; Tallon-Baudry, C. Phase-amplitude coupling at the organism level: The amplitude of spontaneous alpha rhythm fluctuations varies with the phase of the infra-slow gastric basal rhythm. Neuroimage 2017, 146, 951–958. [Google Scholar] [CrossRef]
- Lisman, J. The theta/gamma discrete phase code occuring during the hippocampal phase precession may be a more general brain coding scheme. Hippocampus 2005, 15, 913–922. [Google Scholar] [CrossRef]
- Händel, B.; Haarmeier, T. Cross-frequency coupling of brain oscillations indicates the success in visual motion discrimination. Neuroimage 2009, 45, 1040–1046. [Google Scholar] [CrossRef]
- Axmacher, N.; Henseler, M.M.; Jensen, O.; Weinreich, I.; Elger, C.E.; Fell, J. Cross-frequency coupling supports multi-item working memory in the human hippocampus. Proc. Natl. Acad. Sci. USA 2010, 107, 3228–3233. [Google Scholar] [CrossRef] [Green Version]
- Tort, A.B.; Kramer, M.A.; Thorn, C.; Gibson, D.J.; Kubota, Y.; Graybiel, A.M.; Kopell, N.J. Dynamic cross-frequency couplings of local field potential oscillations in rat striatum and hippocampus during performance of a T-maze task. Proc. Natl. Acad. Sci. USA 2008, 105, 20517–20522. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jensen, O.; Colgin, L.L. Cross-frequency coupling between neuronal oscillations. Trends Cogn. Sci. 2007, 11, 267–269. [Google Scholar] [CrossRef]
- Mormann, F.; Fell, J.; Axmacher, N.; Weber, B.; Lehnertz, K.; Elger, C.E.; Fernández, G. Phase/amplitude reset and theta–gamma interaction in the human medial temporal lobe during a continuous word recognition memory task. Hippocampus 2005, 15, 890–900. [Google Scholar] [CrossRef] [PubMed]
- Canolty, R.T.; Edwards, E.; Dalal, S.S.; Soltani, M.; Nagarajan, S.S.; Kirsch, H.E.; Berger, M.S.; Barbaro, N.M.; Knight, R.T. High gamma power is phase-locked to theta oscillations in human neocortex. Science 2006, 313, 1626–1628. [Google Scholar] [CrossRef] [Green Version]
- Kramer, M.A.; Eden, U.T. Assessment of cross-frequency coupling with confidence using generalized linear models. J. Neurosci. Methods 2013, 220, 64–74. [Google Scholar] [CrossRef] [Green Version]
- Penny, W.D.; Duzel, E.; Miller, K.J.; Ojemann, J.G. Testing for nested oscillation. J. Neurosci. Methods 2008, 174, 50–61. [Google Scholar] [CrossRef] [PubMed]
- Cohen, M.X. Assessing transient cross-frequency coupling in EEG data. J. Neurosci. Methods 2008, 168, 494–499. [Google Scholar] [CrossRef]
- Onslow, A.C.; Bogacz, R.; Jones, M.W. Quantifying phase-amplitude coupling in neuronal network oscillations. Prog. Biophys. Mol. Biol. 2011, 105, 49–57. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Chen, D.; Ranjan, R.; Ke, H.; Tang, Y.; Zomaya, A.Y. A lightweight solution to epileptic seizure prediction based on EEG synchronization measurement. J. Supercomput. 2021, 77, 3914–3932. [Google Scholar] [CrossRef]
- Bandt, C.; Pompe, B. Permutation Entropy: A Natural Complexity Measure for Time Series. Phys. Rev. Lett. 2002, 88, 174102. [Google Scholar] [CrossRef]
- Cheng, N.; Li, Q.; Wang, S.; Wang, R.; Zhang, T. Permutation Mutual Information: A Novel Approach for Measuring Neuronal Phase-Amplitude Coupling. Brain Topogr. 2018, 31, 186–201. [Google Scholar] [CrossRef]
- Aziz, W.; Arif, M. Multiscale Permutation Entropy of Physiological Time Series. In Proceedings of the 2005 Pakistan Section Multitopic Conference, Karachi, Pakistan, 24–25 December 2005; pp. 1–6. [Google Scholar] [CrossRef]
- Bahraminasab, A.; Ghasemi, F.; Stefanovska, A.; McClintock, P.V.E.; Kantz, H. Direction of Coupling from Phases of Interacting Oscillators: A Permutation Information Approach. Phys. Rev. Lett. 2008, 100, 084101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Q.; Zheng, C.G.; Cheng, N.; Wang, Y.Y.; Yin, T.; Zhang, T. Two generalized algorithms measuring phase-amplitude cross-frequency coupling in neuronal oscillations network. Cogn. Neurodyn. 2016, 10, 235–243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, X.; Ouyang, G. Estimating coupling direction between neuronal populations with permutation conditional mutual information. Neuroimage 2010, 52, 497–507. [Google Scholar] [CrossRef] [PubMed]
- Stephen, J.B.; Yovani, M.-P.; Oscar Martinez, S.; Yoan Martinez, L.; Facundo, P.-G.; Francisco, T. Shannon’s, Mutual, Conditional and Joint Entropy Information Indices: Generalization of Global Indices Defined from Local Vertex Invariants. Curr. Comput. Aided Drug Des. 2013, 9, 164–183. [Google Scholar] [CrossRef]
- Cui, D.; Pu, W.; Liu, J.; Bian, Z.; Li, Q.; Wang, L.; Gu, G. A new EEG synchronization strength analysis method: S-estimator based normalized weighted-permutation mutual information. Neural Netw. 2016, 82, 30–38. [Google Scholar] [CrossRef] [PubMed]
- Costa, M.; Goldberger, A.L.; Peng, C.K. Multiscale entropy to distinguish physiologic and synthetic RR time series. Comput. Cardiol. 2002, 29, 137–140. [Google Scholar] [CrossRef]
- Li, Z.; Li, S.; Yu, T.; Li, X. Measuring the Coupling Direction between Neural Oscillations with Weighted Symbolic Transfer Entropy. Entropy 2020, 22, 1442. [Google Scholar] [CrossRef]
- Rutishauser, U.; Ross, I.B.; Mamelak, A.N.; Schuman, E.M. Human memory strength is predicted by theta-frequency phase-locking of single neurons. Nature 2010, 464, 903–907. [Google Scholar] [CrossRef] [Green Version]
- Fries, P.; Schröder, J.H.; Roelfsema, P.R.; Singer, W.; Engel, A.K. Oscillatory neuronal synchronization in primary visual cortex as a correlate of stimulus selection. J. Neurosci. 2002, 22, 3739–3754. [Google Scholar] [CrossRef]
- Proakis, J. Probability, random variables and stochastic processes. IEEE Trans. Acoust. Speech Signal Process. 1985, 33, 1637. [Google Scholar] [CrossRef]
- Samiee, S.; Baillet, S. Time-resolved phase-amplitude coupling in neural oscillations. Neuroimage 2017, 159, 270–279. [Google Scholar] [CrossRef] [PubMed]
- Tort, A.B.; Komorowski, R.W.; Manns, J.R.; Kopell, N.J.; Eichenbaum, H. Theta-gamma coupling increases during the learning of item-context associations. Proc. Natl. Acad. Sci. USA 2009, 106, 20942–20947. [Google Scholar] [CrossRef] [Green Version]
- Scheffzük, C.; Kukushka, V.I.; Vyssotski, A.L.; Draguhn, A.; Tort, A.B.; Brankačk, J. Selective coupling between theta phase and neocortical fast gamma oscillations during REM-sleep in mice. PLoS ONE 2011, 6, e28489. [Google Scholar] [CrossRef] [PubMed]
- Aru, J.; Aru, J.; Priesemann, V.; Wibral, M.; Lana, L.; Pipa, G.; Singer, W.; Vicente, R. Untangling cross-frequency coupling in neuroscience. Curr. Opin. Neurobiol. 2015, 31, 51–61. [Google Scholar] [CrossRef] [Green Version]
- Lozano-Soldevilla, D.; Ter Huurne, N.; Oostenveld, R. Neuronal Oscillations with Non-sinusoidal Morphology Produce Spurious Phase-to-Amplitude Coupling and Directionality. Front Comput. Neurosci. 2016, 10, 87. [Google Scholar] [CrossRef] [Green Version]
- Gerber, E.M.; Sadeh, B.; Ward, A.; Knight, R.T.; Deouell, L.Y. Non-Sinusoidal Activity Can Produce Cross-Frequency Coupling in Cortical Signals in the Absence of Functional Interaction between Neural Sources. PLoS ONE 2016, 11, e0167351. [Google Scholar] [CrossRef]
- Kramer, M.A.; Tort, A.B.L.; Kopell, N.J. Sharp edge artifacts and spurious coupling in EEG frequency comodulation measures. J. Neurosci. Methods 2008, 170, 352–357. [Google Scholar] [CrossRef]
- Cole, S.R.; Peterson, E.J.; van der Meij, R.; de Hemptinne, C.; Starr, P.A.; Voytek, B. Nonsinusoidal oscillations underlie pathological phase-amplitude coupling in the motor cortex in Parkinson’s disease. bioRxiv 2016, 049304. [Google Scholar] [CrossRef]
Permutation | Symbol |
---|---|
012 | |
021 | |
102 | |
120 | |
210 | |
201 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yin, L.; Tian, F.; Hu, R.; Li, Z.; Yin, F. Estimating Phase Amplitude Coupling between Neural Oscillations Based on Permutation and Entropy. Entropy 2021, 23, 1070. https://doi.org/10.3390/e23081070
Yin L, Tian F, Hu R, Li Z, Yin F. Estimating Phase Amplitude Coupling between Neural Oscillations Based on Permutation and Entropy. Entropy. 2021; 23(8):1070. https://doi.org/10.3390/e23081070
Chicago/Turabian StyleYin, Liyong, Fan Tian, Rui Hu, Zhaohui Li, and Fuzai Yin. 2021. "Estimating Phase Amplitude Coupling between Neural Oscillations Based on Permutation and Entropy" Entropy 23, no. 8: 1070. https://doi.org/10.3390/e23081070
APA StyleYin, L., Tian, F., Hu, R., Li, Z., & Yin, F. (2021). Estimating Phase Amplitude Coupling between Neural Oscillations Based on Permutation and Entropy. Entropy, 23(8), 1070. https://doi.org/10.3390/e23081070