Single-Channel FMCW-Radar-Based Multi-Passenger Occupancy Detection Inside Vehicle
Abstract
:1. Introduction
2. Materials and Methods
2.1. Radar Model
2.2. Characteristics of Radar Signals by Breathing
2.3. Multi-Passenger Occupancy Detection Inside Vehicle
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sterner, H.; Aichholzer, W.; Haselberger, M. Development of an antenna sensor for occupant detection in passenger transportation. Procedia Eng. 2012, 47, 178–183. [Google Scholar] [CrossRef] [Green Version]
- Aiello, V.; Borazjani, P.N.; Battista, E.; Albanese, M. Next-generation technologies for preventing accidental death of children trapped in parked vehicles. In Proceedings of the 2014 IEEE 15th International Conference on Information Reuse and Integration (IEEE IRI 2014), Redwood City, CA, USA, 13–15 August 2014; pp. 508–513. [Google Scholar]
- Diewald, A.R.; Landwehr, J.; Tatarinov, D.; Cola, P.D.M.; Watgen, C.; Mica, C.; Goniva, T. RF-based child occupation detection in the vehicle interior. In Proceedings of the 2016 17th International Radar Symposium (IRS), Krakow, Poland, 10–12 May 2016; pp. 1–4. [Google Scholar]
- Euro NCAP 2025 Roadmap: In Pursuit of Vision Zero. Available online: https://cdn.euroncap.com/media/30700/euroncap-roadmap-2025-v4.pdf (accessed on 3 August 2021).
- Glenn, L.; Glenn, E.; Neurauter, L. Pediatric Vehicular Heatstroke: Evaluation of Preventative Technologies (Report No. 21-UT-098); The National Surface Transportation Safety Center for Excellence: Blacksburg, VA, USA, 2021. [Google Scholar]
- Kasten, K.; Stratmann, A.; Munz, M.; Dirscherl, K.; Lamers, S. IBolt technology-A weight sensing system for advance passenger safety. In Advanced Microsystems for Automotive Applications 2006; Springer: Berlin, Germany, 2006; pp. 171–186. [Google Scholar]
- Vergnano, A.; Leali, F. A methodology for out of position occupant identification from pressure sensors embedded in a vehicle seat. Hum. Intell. Syst. Integr. 2020, 2, 35–44. [Google Scholar] [CrossRef]
- Satz, A.; Hammerschmidt, D. Tumpold, D. Capacitive passenger detection utilizing dielectric dispersion in human tissues. Sensors Actuators Phys. 2009, 152, 1–4. [Google Scholar] [CrossRef]
- Hou, Y.L.; Pang, G.K. People counting and human detection in a challenging situation. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 2010, 41, 24–33. [Google Scholar] [CrossRef] [Green Version]
- Papakis, I.; Sarkar, A.; Svetovidov, A.; Hickman, J.S.; Lynn Abbott, A. Convolutional Neural Network-Based In-Vehicle Occupant Detection and Classification Method using Second Strategic Highway Research Program Cabin Images. Transp. Res. Rec. 2021, 2675, 443–457. [Google Scholar] [CrossRef]
- Wu, L.; Wang, Y. A low-power electric-mechanical driving approach for true occupancy detection using a shuttered passive infrared sensor. IEEE Sens. J. 2018, 19, 47–57. [Google Scholar] [CrossRef]
- Hyun, E.; Jin, Y.S.; Lee, J.H. A pedestrian detection scheme using a coherent phase difference method based on 2D range-Doppler FMCW radar. Sensors 2016, 16, 124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krim, H.; Viberg, M. Two decades of array signal processing research: The parametric approach. IEEE Signal Process. Mag. 1996, 13, 67–94. [Google Scholar] [CrossRef]
- Yavari, E.; Jou, H.; Lubecke, V.; Boric-Lubecke, O. Doppler radar sensor for occupancy monitoring. In Proceedings of the 2013 IEEE Topical Conference on Power Amplifiers for Wireless and Radio Applications, Austin, TX, USA, 20 January 2013; pp. 145–147. [Google Scholar]
- Huh, J.H.; Cho, S.H. Seat Belt Reminder System In Vehicle Using IR-UWB Radar. In Proceedings of the 2018 International Conference on Network Infrastructure and Digital Content (IC-NIDC), Guiyang, China, 22–24 August 2018; pp. 256–259. [Google Scholar]
- Lim, S.; Jung, J.; Kim, S.C.; Lee, S. Deep neural network-based in-vehicle people localization using ultra-wideband radar. IEEE Access 2020, 8, 96606–96612. [Google Scholar] [CrossRef]
- Abedi, H.; Luo, S.; Shaker, G. On the use of low-cost radars and machine learning for in-vehicle passenger monitoring. In Proceedings of the 2020 IEEE 20th Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems (SiRF), San Antonio, TX, USA, 26–29 January 2020; pp. 63–65. [Google Scholar]
- Abedi, H.; Magnier, C.; Mazumdar, V.; Shaker, G. Improving passenger safety in cars using novel radar signal processing. Eng. Rep. 2021, e12413. [Google Scholar] [CrossRef]
- Dubnov, S. Generalization of spectral flatness measure for non-gaussian linear processes. IEEE Signal Process. Lett. 2004, 11, 698–701. [Google Scholar] [CrossRef]
- McLachlan, G.J. Discriminant Analysis and Statistical Pattern Recognition; John Wiley & Sons: Hoboken, NJ, USA, 2004. [Google Scholar]
- Stove, A.G. Linear FMCW radar techniques. In IEE Proceedings F-Radar and Signal Processing; Institution of Engineering and Technology (IET): London, UK, 1992; Volume 139, pp. 343–350. [Google Scholar]
- Choi, H.I.; Song, H.; Shin, H.C. Target range selection of FMCW radar for accurate vital information extraction. IEEE Access 2020, 9, 1261–1270. [Google Scholar] [CrossRef]
- Skolnik, M.I. Introduction to Radar Systems, 3rd ed.; McGraw-Hill: New York, NY, USA, 2001. [Google Scholar]
- Zwillinger, D.; Jeffrey, A. Table of Integrals, Series, and Products; Elsevier: Amsterdam, The Netherlands, 2007. [Google Scholar]
Parameter | Value |
---|---|
Center frequency | 61 GHz |
Bandwidth | 6 GHz |
Chirp duration | 128 μs |
Sampling frequency | 2 MHz |
Scan interval | 50 ms |
Tx antenna | 1 channel |
Rx antenna | 1 channel |
Beamwidth (Azimuth) | |
Beamwidth (Elevation) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, H.; Shin, H.-C. Single-Channel FMCW-Radar-Based Multi-Passenger Occupancy Detection Inside Vehicle. Entropy 2021, 23, 1472. https://doi.org/10.3390/e23111472
Song H, Shin H-C. Single-Channel FMCW-Radar-Based Multi-Passenger Occupancy Detection Inside Vehicle. Entropy. 2021; 23(11):1472. https://doi.org/10.3390/e23111472
Chicago/Turabian StyleSong, Heemang, and Hyun-Chool Shin. 2021. "Single-Channel FMCW-Radar-Based Multi-Passenger Occupancy Detection Inside Vehicle" Entropy 23, no. 11: 1472. https://doi.org/10.3390/e23111472
APA StyleSong, H., & Shin, H.-C. (2021). Single-Channel FMCW-Radar-Based Multi-Passenger Occupancy Detection Inside Vehicle. Entropy, 23(11), 1472. https://doi.org/10.3390/e23111472