Possible Alterations of Local Gravitational Field Inside a Superconductor
Abstract
:1. Introduction
2. Generalized Gravito-Maxwell Equations
2.1. Generalizing Maxwell Equations
2.1.1. Gauge Fixing
2.1.2. Gravito-Maxwell Equations
2.1.3. Gravito-Lorentz Force
2.1.4. Generalized Maxwell Equations
3. The Model
3.1. Time-Dependent Ginzburg–Landau Formulation
3.1.1. Dimensionless TDGL
3.2. Solving Dimensionless TDGL
3.2.1. 1-D Case
4. Discussion
5. Concluding Remarks
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- DeWitt, B.S. Superconductors and gravitational drag. Phys. Rev. Lett. 1966, 16, 1092–1093. [Google Scholar] [CrossRef]
- Papini, G. Detection of inertial effects with superconducting interferometers. Phys. Lett. A 1967, 24, 32–33. [Google Scholar] [CrossRef]
- Papini, G. Superconducting and normal metals as detectors of gravitational waves. Lett. Nuovo Cim. 1970, 4S1, 1027–1032. [Google Scholar] [CrossRef]
- Rothen, F. Application de la theorie relativiste des phenomenes irreversible a la phenomenologie de la supraconductivite. Helv. Phys. Acta 1968, 41, 591. [Google Scholar]
- Rystephanick, R.G. On the London moment in rotating superconducting cylinders. Can. J. Phys. 1973, 51, 789–794. [Google Scholar] [CrossRef]
- Hirakawa, H. Superconductors in gravitational field. Phys. Lett. A 1975, 53, 395–396. [Google Scholar] [CrossRef]
- Minasyan, I.S. Londons equations in riemannian space. Dokl. Akad. Nauk. SSSR 1976, 228, 576–578. [Google Scholar]
- Anandan, J. Gravitational and rotational effects in quantum interference. Phys. Rev. D 1977, 15, 1448. [Google Scholar] [CrossRef]
- Anandan, J. Interference, Gravity and Gauge Fields. Nuovo Cim. A 1979, 53, 221. [Google Scholar] [CrossRef]
- Anandan, J. Relativistic thermoelectromagnetic gravitational effects in normal conductors and superconductors. Phys. Lett. A 1984, 105, 280–284. [Google Scholar] [CrossRef]
- Anandan, J. Relativistic gravitation and superconductors. Class. Quantum Grav. 1994, 11, A23. [Google Scholar] [CrossRef]
- Ross, D.K. The London equations for superconductors in a gravitational field. J. Phys. Math. Gen. 1983, 16, 1331. [Google Scholar] [CrossRef]
- Felch, S.B.; Tate, J.; Cabrera, B.; Anderson, J.T. Precise determination of h/me using a rotating, superconducting ring. Phys. Rev. B 1985, 31, 7006–7011. [Google Scholar] [CrossRef]
- Dinariev, O.Y.; Mosolov, A.B. A relativistic effect in the theory of superconductivity. Dokl. Akad. Nauk SSSR 1987, 295, 98–101. [Google Scholar]
- Peng, H. A new approach to studying local gravitomagnetic effects on a superconductor. Gen. Relativ. Gravit. 1990, 22, 609–617. [Google Scholar] [CrossRef]
- Peng, H.; Torr, D.G.; Hu, E.K.; Peng, B. Electrodynamics of moving superconductors and superconductors under the influence of external forces. Phys. Rev. B 1991, 43, 2700. [Google Scholar] [CrossRef] [PubMed]
- Peng, H.; Lind, G.; Chin, Y.S. Interaction between gravity and moving superconductors. Gen. Relativ. Gravit. 1991, 23, 1231–1250. [Google Scholar] [CrossRef]
- Li, N.; Torr, D.G. Effects of a gravitomagnetic field on pure superconductors. Phys. Rev. D 1991, 43, 457. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Torr, D.G. Gravitational effects on the magnetic attenuation of superconductors. Phys. Rev. B 1992, 46, 5489. [Google Scholar] [CrossRef]
- Torr, D.G.; Li, N. Gravitoelectric-electric coupling via superconductivity. Found. Phys. Lett. 1993, 6, 371–383. [Google Scholar] [CrossRef]
- de Andrade, L.C.G. Torsion, superconductivity, and massive electrodynamics. Int. J. Theor. Phys. 1992, 31, 1221–1227. [Google Scholar] [CrossRef]
- Podkletnov, E.; Nieminen, R. A possibility of gravitational force shielding by bulk YBa2Cu3O7−X superconductor. Phys. C Supercond. 1992, 203, 441–444. [Google Scholar] [CrossRef]
- Podkletnov, E. Weak gravitation shielding properties of composite bulk YBa2Cu3O7−X superconductor below 70 K under EM field. arXiv 1997, arXiv:cond-mat/9701074. Available online: https://arxiv.org/abs/cond-mat/9701074 (accessed on 3 February 2021).
- Modanese, G. Theoretical analysis of a reported weak gravitational shielding effect. Europhys. Lett. 1996, 35, 413–418. [Google Scholar] [CrossRef] [Green Version]
- Modanese, G. Role of a local cosmological constant in euclidean quantum gravity. Phys. Rev. D 1996, 54, 5002. [Google Scholar] [CrossRef] [Green Version]
- Wu, N. Gravitational shielding effects in gauge theory of gravity. Commun. Theor. Phys. 2004, 41, 567–572. [Google Scholar]
- Schiff, L.I.; Barnhill, M.V. Gravitation-induced electric field near a metal. Phys. Rev. 1966, 151, 1067. [Google Scholar] [CrossRef]
- Dessler, A.J.; Michel, F.C.; Rorschach, H.E.; Trammell, G.T. Gravitationally Induced Electric Fields in Conductors. Phys. Rev. 1968, 168, 737–743. [Google Scholar] [CrossRef]
- Witteborn, F.C.; Fairbank, W.M. Experimental comparison of the gravitational force on freely falling electrons and metallic electrons. Phys. Rev. Lett. 1967, 19, 1049. [Google Scholar] [CrossRef]
- Witteborn, F.C.; Fairbank, W.M. Experiments to determine the force of gravity on single electrons and positrons. Nature 1968, 220, 436–440. [Google Scholar] [CrossRef]
- Herring, C. Gravitationally induced electric field near a conductor, and its relation to the surface-stress concept. Phys. Rev. 1968, 171, 1361. [Google Scholar] [CrossRef]
- Minter, S.J.; Wegter-McNelly, K.; Chiao, R.Y. Do Mirrors for Gravitational Waves Exist? Physica E 2010, 42, 234. [Google Scholar] [CrossRef] [Green Version]
- Quach, J.Q. Gravitational Casimir effect. Phys. Rev. Lett. 2015, 144, 081104, Erratum: Phys. Rev. Lett. 2017, 118, 139901. [Google Scholar] [CrossRef] [PubMed]
- Quach, J.Q. Fisher information and the weak equivalence principle of a quantum particle in a gravitational wave. Eur. Phys. J. 2020, C80, 1–5. [Google Scholar] [CrossRef]
- Ummarino, G.A.; Gallerati, A. Superconductor in a weak static gravitational field. Eur. Phys. J. 2017, C77, 549. [Google Scholar] [CrossRef]
- Behera, H. Comments on gravitoelectromagnetism of Ummarino and Gallerati in “Superconductor in a weak static gravitational field” vs other versions. Eur. Phys. J. 2017, C77, 822. [Google Scholar] [CrossRef] [Green Version]
- Ummarino, G.A.; Gallerati, A. Exploiting weak field gravity-Maxwell symmetry in superconductive fluctuations regime. Symmetry 2019, 11, 1341. [Google Scholar] [CrossRef] [Green Version]
- Ummarino, G.A.; Gallerati, A. Josephson AC effect induced by weak gravitational field. Class. Quant. Grav. 2020, 37, 217001. [Google Scholar] [CrossRef]
- Agop, M.; Buzea, C.G.; Nica, P. Local gravitoelectromagnetic effects on a superconductor. Phys. C Supercond. 2000, 339, 120–128. [Google Scholar] [CrossRef]
- Wald, R.M. General Relativity; Chicago University Press: Chicago, IL, USA, 1984. [Google Scholar]
- Braginsky, V.B.; Caves, C.M.; Thorne, K.S. Laboratory Experiments to Test Relativistic Gravity. Phys. Rev. D 1977, 15, 2047. [Google Scholar] [CrossRef] [Green Version]
- Peng, H. On calculation of magnetic-type gravitation and experiments. Gen. Relativ. Gravit. 1983, 15, 725–735. [Google Scholar]
- Ruggiero, M.L.; Tartaglia, A. Gravitomagnetic effects. Nuovo C. B 2002, 117, 743–768. [Google Scholar]
- Mashhoon, B.; Paik, H.J.; Will, C.M. Detection of the gravitomagnetic field using an orbiting superconducting gravity gradiometer. theoretical principles. Phys. Rev. D 1989, 39, 2825. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, Q.; Wang, S. Time dependent Ginzburg-Landau equations of superconductivity. Phys. D Nonlinear Phenom. 1995, 88, 139–166. [Google Scholar] [CrossRef]
- Lin, F.; Du, Q. Ginzburg-Landau vortices: Dynamics, pinning, and hysteresis. SIAM J. Math. Anal. 1997, 28, 1265–1293. [Google Scholar] [CrossRef] [Green Version]
- Ullah, S.; Dorsey, A.T. Effect of fluctuations on the transport properties of type-ii superconductors in a magnetic field. Phys. Rev. B 1991, 44, 262. [Google Scholar] [CrossRef]
- Ghinovker, M.; Shapiro, I.; Shapiro, B.Y. Explosive nucleation of superconductivity in a magnetic field. Phys. Rev. B 1999, 59, 9514. [Google Scholar] [CrossRef]
- Kopnin, N.B.; Thuneberg, E.V. Time-dependent Ginzburg-Landau analysis of inhomogeneous normal-superfluid transitions. Phys. Rev. Lett. 1999, 83, 116. [Google Scholar] [CrossRef]
- Fleckinger-Pellé, J.; Kaper, H.G.; Takáč, P. Dynamics of the Ginzburg-Landau equations of superconductivity. Nonlinear Anal. Theory, Methods Appl. 1998, 32, 647–665. [Google Scholar] [CrossRef] [Green Version]
- Du, Q.; Gray, P. High-kappa limits of the time-dependent Ginzburg-Landau model. SIAM J. Appl. Math. 1996, 56, 1060–1093. [Google Scholar] [CrossRef]
- Tinkham, M. Introduction to Superconductivity; Dover Publications Inc.: New York, NY, USA, 2004. [Google Scholar]
- Ketterson, J.B.; Song, S.N. Superconductivity; Cambridge University Press: Cambridge, UK, 1999. [Google Scholar]
- De Gennes, P.-G. Superconductivity of Metals and Alloys; Taylor & Francis Ltd.: London, UK, 2018. [Google Scholar]
- Gulian, A. Shortcut to superconductivity; Springer Nature: Cham, Switzerland, 2020. [Google Scholar]
- Gallerati, A. Interaction between superconductors and weak gravitational field. J. Phys. Conf. Ser. 2020, 1690, 012141. [Google Scholar] [CrossRef]
YBCO | Pb | |
---|---|---|
7.2 K | ||
6.3 K | ||
1.7 · 10−7 m | ||
7.8 · 10−8 m | ||
2.5 · 10−9 m Ω m (**) | ||
0.018 Tesla | ||
0.48 | ||
6.1 · 10−15 s | ||
6.6 · 103 | ||
8.2 · 10−17 | ||
1 m2/s | ||
ℓ | 1.7 · 10−6 m | |
1.8 · 106 m/s | ||
g⋆ | |||
2.6 · 10−12 | |||
9.8 · 10−12 | |||
2 · 10−11 | |||
2.8 · 10−7 | |||
g⋆ | |||
1 · 10−17 | |||
1.4 · 10−17 | |||
8.2 · 10−17 | |||
2.2 · 10−15 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ummarino, G.A.; Gallerati, A. Possible Alterations of Local Gravitational Field Inside a Superconductor. Entropy 2021, 23, 193. https://doi.org/10.3390/e23020193
Ummarino GA, Gallerati A. Possible Alterations of Local Gravitational Field Inside a Superconductor. Entropy. 2021; 23(2):193. https://doi.org/10.3390/e23020193
Chicago/Turabian StyleUmmarino, Giovanni Alberto, and Antonio Gallerati. 2021. "Possible Alterations of Local Gravitational Field Inside a Superconductor" Entropy 23, no. 2: 193. https://doi.org/10.3390/e23020193
APA StyleUmmarino, G. A., & Gallerati, A. (2021). Possible Alterations of Local Gravitational Field Inside a Superconductor. Entropy, 23(2), 193. https://doi.org/10.3390/e23020193