Statistical Analysis of the Relationship between AETA Electromagnetic Anomalies and Local Earthquakes
Abstract
:1. Introduction
2. AETA Electromagnetic Signals
3. Superposed Epoch Analysis
3.1. Anomaly Detection
3.2. Earthquake-Related Anomalies Superposition
3.3. Random Anomalies Superposition
4. Results
5. Discussion
5.1. AETA Electromagnetic Signals
5.2. Prediction Efficiency Based on AETA Electromagnetic Anomalies
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cai, R.; Wu, Z.; Tan, D.C.; Yun, H.; Guo, P. A Summary of Electromagnetic Anomalies before Earthquakes. South China J. Seismol. 2018, 38, 1–16. [Google Scholar] [CrossRef]
- Sobolev, G.A. Methodology, results, and problems of forecasting earthquakes. Herald Russ. Acad. Sci. 2015, 85, 107–111. [Google Scholar] [CrossRef]
- Taheri, M.; Baradaran, S.; Jafarizadeh, M. Increased radon concentration in Katalekhor tourist cave during an earthquake compared with 10 years of follow-up data. J. Radioanal. Nucl. Chem. 2020, 326, 911–918. [Google Scholar] [CrossRef]
- Papachristodoulou, C.; Stamoulis, K.; Ioannides, K. Temporal Variation of Soil Gas Radon Associated with Seismic Activity: A Case Study in NW Greece. Pure Appl. Geophys. 2020, 177, 821–836. [Google Scholar] [CrossRef]
- Shah, M.; Aibar, A.C.; Tariq, M.A.; Ahmed, J.; Ahmend, A. Possible ionosphere and atmosphere precursory analysis related to M-w > 6.0 earthquakes in Japan. Remote Sens. Environ. 2020, 239, 111620. [Google Scholar] [CrossRef]
- Pulinets, S.A.; Davidenko, D.V. The Nocturnal Positive Ionospheric Anomaly of Electron Density as a Short-Term Earthquake Precursor and the Possible Physical Mechanism of Its Formation. Geomagn. Aeron. 2018, 58, 559–570. [Google Scholar] [CrossRef]
- Qikonomou, C.; Haralambous, H.; Muslim, B. Investigation of ionospheric precursors related to deep and intermediate earthquakes based on spectral and statistical analysis. Adv. Space Res. 2017, 59, 587–602. [Google Scholar] [CrossRef]
- Luca, G.D.; Cario, G.D.; Tallini, M. A record of changes in the Gran Sasso groundwater before, during and after the 2016 Amatrice earthquake, central Italy. Sci. Rep. 2018, 8, 15982. [Google Scholar] [CrossRef] [PubMed]
- Han, P.; Hottori, K.; Huang, Q.H.; Hirooka, S.; Yoshino, C. Spatiotemporal characteristics of the geomagnetic diurnal variation anomalies prior to the 2011 Tohoku earthquake (Mw 9.0) and the possible coupling of multiple pre-earthquake phenomena. J. Asian Earth Sci. 2016, 129, 13–21. [Google Scholar] [CrossRef]
- Sharma, S.; Singh, R.P.; Pundhir, D.; Singh, B. A multi-experiment approach to ascertain electromagnetic precursors of Nepal earthquakes. J. Atmos. Sol. Terr. Phys. 2020, 197, 105163. [Google Scholar] [CrossRef]
- Li, M.; Lu, J.; Zhang, X.M.; Shen, X.H. Indications of Ground-based Electromagnetic Observations to A Possible Lithosphere-Atmosphere-Ionosphere Electromagnetic Coupling before the 12 May 2008 Wenchuan M-S 8.0 Earthquake. Atmosphere 2019, 10, 355. [Google Scholar] [CrossRef] [Green Version]
- Cantizos, D.; Nikolopoulos, D.; Petrakie, E.; Yannakopoulos, P.; Nomicos, C. Earthquake precursory signatures in electromagnetic radiation measurements in terms of day-to-day fractal spectral exponent variation: Analysis of the eastern Aegean 13/04/2017-20/07/2017 seismic activity. J. Seismol. 2018, 22, 1499–1513. [Google Scholar] [CrossRef]
- Zhao, S.F.; Shen, X.H.; Zhima, Z.R.; Zhou, C. The very low-frequency transmitter radio wave anomalies related to the 2010 Ms 7.1 Yushu earthquake observed by the DEMETER satellite and the possible mechanism. Ann. Geophys. 2020, 38, 969–981. [Google Scholar] [CrossRef]
- Marchetti, D.; Santis, A.D.; Shen, X.H.; Campuzano, S.A.; Perrone, L.; Piscini, A.; Giovambattista, R.; Jin, S.G.; Ippolito, A.; Cianchini, G.; et al. Possible Lithosphere-Atmosphere-Ionosphere Coupling effects prior to the 2018 Mw=7.5 Indonesia earthquake from seismic, atmospheric and ionospheric data. J. Asian Earth Sci. 2020, 188, 104097. [Google Scholar] [CrossRef]
- Potirakis, S.M.; Schekotov, A.; Contoyiannis, Y.; Balasis, G.; Koulouras, G.E.; Meils, N.S.; Boutsi, A.Z.; Hayakawa, M.; Eftaxias, K.; Nomicos, C. On Possible Electromagnetic Precursors to a Significant Earthquake (Mw=6.3) Occurred in Lesvos (Greece) on 12 June 2017. Entropy 2019, 21, 241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eftaxias, K.; Potirakis, S.M.; Contoyiannis, Y. Four-Stage Model of Earthquake Generation in Terms of Fracture-Induced Electromagnetic Emissions. Complex. Seism. Time Ser. 2018, 437–502. [Google Scholar] [CrossRef]
- Wang, X.A.; Yong, S.S.; Xu, B.X.; Liang, Y.W.; Bai, Z.Q.; An, H.Y.; Zhang, X.; Huang, J.P.; Xie, Z.; Lin, K.; et al. Research and Implementation of Multi-component Seismic Monitoring System AETA. Acta Sci. Nat. Univ. Pekin. 2018, 54, 487–494. [Google Scholar] [CrossRef]
- Qiu, Z.C.; Yong, S.S.; Wang, X.A. On Possible Electromagnetic Precursors to a Significant Earthquake (Mw = 7.0) Occurred in JiuZhaiGou (China) on 8 August 2017. In Proceedings of the International Conference, Information Science and System (ICISS), Cambridge, UK, 19–22 March 2020; pp. 229–234. [Google Scholar] [CrossRef]
- Liu, C.; Yong, S.S.; Wang, X.A.; Zhang, X. A Multi-feature Anomaly Detection Method Based on AETA ULF Electromagnetic Disturbance Signal. In Proceedings of the Conference, Information Technology, Networking, Electronic and Automation Control (ITNEC), Chongqing, China, 12–14 June 2020; pp. 1103–1108. [Google Scholar] [CrossRef]
- Feng, Y.H.; Wang, X.A.; Yong, S.S.; Huang, J.P. An AETA Electromagnetic Disturbance Anomaly Detection Method based on Fractal Theory. In Proceedings of the Conference, Information Technology, Networking, Electronic and Automation Control (ITNEC), Chengdu, China, 15–17 March 2019; pp. 765–769. [Google Scholar]
- Li, D.; Yong, S.S.; Wang, X.A.; Zhang, X.; Zhang, D. Design and Implementation of a Data Management Server Based on AETA. In Proceedings of the Conference, Information Technology, Networking, Electronic and Automation Control (ITNEC), Chongqing, China, 12–14 June 2020; pp. 1375–1379. [Google Scholar] [CrossRef]
- Parrot, M.; Benoist, D.; Berthelier, J.J.; Blecki, J.; Chapuis, Y.; Colin, F.; Elie, F.; Fergeau, P.; Lagoutte, D.; Lefeuvre, F.; et al. The magnetic field experiment IMSC and its data processing onboard DEMETER: Scientific objectives, description and first results. Planet. Space Sci. 2006, 54, 441–455. [Google Scholar] [CrossRef]
- Cao, J.B.; Zeng, L.; Zhan, F.; Wang, Z.G.; Wang, Y.; Chen, Y.; Meng, Q.C.; Ji, Z.Q.; Wang, P.F.; Liu, Z.W.; et al. The electromagnetic wave experiment for CSES mission: Search coil magnetometer. Sci. China Technol. Sci. 2018, 5, 653–658. [Google Scholar] [CrossRef]
- He, C.J.; Yong, S.S.; Wang, X.A. System integration and test of AETA electromagnetic disturbance sensing probe. J. Electron. Meas. Instrum. 2020, 34, 90–95. [Google Scholar] [CrossRef]
- Kon, S.; Nishihashi, M.; Hattori, K. Ionospheric anomalies possibly associated with M ≥ 6 earthquakes in Japan during 1998-2011: Case studies and statistical study. J. Asian Earth Sci. 2011, 41, 410–420. [Google Scholar] [CrossRef]
- Han, P.; Hattori, K.; Hirokawa, M.; Zhuang, J.C.; Chen, C.H.; Febriani, F.; Yamaguchi, H.; Yoshino, C.; Liu, J.Y.; Yoshida, S. Statistical analysis of ULF seismo-magnetic phenomena at Kakioka, Japan, during 2001–2010. J. Geophys. Res. Space Phys. 2014, 119, 4998–5011. [Google Scholar] [CrossRef]
- Chen, H.Y.; Wang, R.; Miao, M.; Liu, X.C.; Ma, Y.H.; Hattori, K.; Han, P. A Statistical Study of the Correlation between Geomagnetic Storms and M >= 7.0 Global Earthquakes during 1957–2020. Entropy 2020, 22, 1270. [Google Scholar] [CrossRef] [PubMed]
- Lv, Y.X.; Wang, X.A.; Huang, J.P.; Yong, S.S. Research on Jiuzhaigou Ms 7.0 Earthquake Based on AETA Electromagnetic Disturbance. Acta Sci. Nat. Univ. Pekin. 2019, 55, 1007–1013. [Google Scholar] [CrossRef]
- Chang, X.T.; Zou, B.; Guo, J.Y.; Zhu, G.B.; Li, W.; Li, W.D. One sliding PCA method to detect ionospheric anomalies before strong Earthquakes: Cases study of Qinghai, Honshu, Hotan and Nepal earthquakes. Adv. Space Res. 2017, 59, 2058–2070. [Google Scholar] [CrossRef]
- Rich, F.J.; Sultan, P.J.; Burke, W.J. The 27-day variations of plasma densities and temperatures in the topside ionosphere. J. Geophys. Res. Space Phys. 2003, 108, 1297. [Google Scholar] [CrossRef]
- Hattori, K.; Serita, A.; Yoshino, C.; Hayakawa, M.; Isezaki, N. Singular spectral analysis and principal component analysis for signal discrimination of ULF geomagnetic data associated with 2000 Izu Island Earthquake Swarm. Phys. Chem. Earth Parts A/b/c 2006, 31, 281–291. [Google Scholar] [CrossRef]
- Zhang, J.Y.; Wang, X.A.; Yong, S.S.; Huang, J.P. Precursory Anomaly Detection of Jiuzhaigou M7.0 Earthquake Base on ARIMA Model. North China Earthq. Sci. 2019, 37, 28–33. [Google Scholar] [CrossRef]
- Huang, J.P.; Wang, X.A.; Yong, S.S.; Wang, M.; Liu, Z. Analysis of Electromagnetic Disturbance Anomaly prior to the 2017 Ms7.0 Jiuzhaigou Earthquake. Earthquake 2019, 39, 84–94. [Google Scholar] [CrossRef]
- Qian, S.Q.; Lv, Z.; Ren, K.X. An experimental study on the physical mechanism of the precursory asynchrony of seismic electromagnetic radiation. Acta Seismol. Sin. 1998, 5, 88–93. [Google Scholar]
- Han, P.; Hattori, K.; Zhuang, J.C.; Chen, C.H.; Liu, J.Y.; Yoshida, S. Evaluation of ULF seismo-magnetic phenomena in Kakioka, Japan by using Molchan’s error diagram. Geophys. J. Int. 2017, 208, 482–490. [Google Scholar] [CrossRef]
No. | Station | Location (E, N) | Installation Time | Analyzed Period | EQ Num |
---|---|---|---|---|---|
1 | DJY | 103.65°, 30.98° | 27 December 2016 | 1 | 29 |
2 | SMWJ | 102.28°, 29.31° | 19 December 2016 | 1 | 26 |
3 | SMSD | 102.35°, 29.23° | 18 December 2016 | 1 | 25 |
4 | MN | 102.17°, 27.4° | 15 December 2016 | 1 | 24 |
5 | FGU | 121.72°, 24.82° | 13 January 2017 | 2 | 98 |
6 | GOX | 104.79°, 28.38° | 13 January 2017 | 2 | 72 |
7 | NTTU | 121.15°, 22.75° | 13 January 2017 | 2 | 101 |
8 | HSGC | 121.14°, 24.71° | 13 January 2017 | 2 | 89 |
9 | MB | 103.54°, 28.83° | 12 April 2017 | 5 | 27 |
10 | ML | 101.27°, 27.93° | 20 April 2017 | 5 | 30 |
11 | HA | 102.18°,28.62° | 11 May 2017 | 6 | 20 |
12 | BX | 102.82°, 30.25° | 5 June 2017 | 7 | 25 |
13 | PW | 104.55°, 32.41° | 7 June 2017 | 7 | 23 |
14 | QW | 103.94°, 29.21° | 8 June 2017 | 7 | 27 |
15 | MX | 103.85°, 31.69° | 13 June 2017 | 7 | 26 |
16 | WC | 103.59°, 31.48° | 13 June 2017 | 7 | 24 |
17 | SF | 104.16°, 31.13° | 5 June 2017 | 7 | 26 |
18 | EMS | 103.5°, 29.59° | 5 June 2017 | 7 | 24 |
19 | MC | 103.9°, 28.96° | 11 June 2017 | 7 | 27 |
20 | XJX | 102.36°, 31° | 5 June 2017 | 7 | 23 |
No. | Station | Significantly Anomaly Period |
---|---|---|
1 | DJY | 13 days before |
2 | SMWJ | 2 days before |
3 | SMSD | 11 days before |
4 | MN | 23 days before, 20 days before, 17 days before, 6 days before, 15 days after, 16 days after, 23 days after |
5 | FGU | 13 days before, 10 days before, 9 days before, 6 days after, 23 days after, 26 days after |
6 | GOX | 12 days before, 6 days before, 4 days before |
7 | NTTU | 0 days before, 7 days after |
8 | HSGC | - |
9 | MB | 5 days after |
10 | ML | 8 days before |
11 | HA | 14 days before |
12 | BX | - |
13 | PW | 8 days before, 1 day before, 1 day after, 4 days after, 12 days after |
14 | QW | - |
15 | MX | 22 days before, 6 days before |
16 | WC | - |
17 | SF | 4 days after |
18 | EMS | 19 days before, 18 days before, 2 days before, 0 day before |
19 | MC | 5 days before |
20 | XJX | 12–13 days after, 15–21 days after, 23–24 days after |
No. | Station | Area Skill Score | No. | Station | Area Skill Score |
---|---|---|---|---|---|
1 | DJY | 0.035 | 11 | PW | 0.136 |
2 | SMWJ | 0.044 | 12 | MX | 0.034 |
3 | SMSD | 0.114 | 13 | SF | 0.156 |
4 | MN | 0.162 | 14 | EMS | 0.087 |
5 | FGU | 0.104 | 15 | MC | 0.064 |
6 | GOX | 0.111 | 16 | XJX | 0.078 |
7 | NTTU | 0.074 | 17 | BX | −0.031 |
8 | MB | 0.146 | 18 | WC | 0.032 |
9 | ML | 0.064 | 19 | QW | −0.02 |
10 | HA | 0.091 | 20 | HSGC | 0.039 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, Q.; Yong, S.; Wang, X. Statistical Analysis of the Relationship between AETA Electromagnetic Anomalies and Local Earthquakes. Entropy 2021, 23, 411. https://doi.org/10.3390/e23040411
Guo Q, Yong S, Wang X. Statistical Analysis of the Relationship between AETA Electromagnetic Anomalies and Local Earthquakes. Entropy. 2021; 23(4):411. https://doi.org/10.3390/e23040411
Chicago/Turabian StyleGuo, Qinmeng, Shanshan Yong, and Xin’an Wang. 2021. "Statistical Analysis of the Relationship between AETA Electromagnetic Anomalies and Local Earthquakes" Entropy 23, no. 4: 411. https://doi.org/10.3390/e23040411
APA StyleGuo, Q., Yong, S., & Wang, X. (2021). Statistical Analysis of the Relationship between AETA Electromagnetic Anomalies and Local Earthquakes. Entropy, 23(4), 411. https://doi.org/10.3390/e23040411