Quantum Randomness is Chimeric
Abstract
:1. Quantum Oracles for Randomness
1.1. Quantum Randomness through the Measurement Problem
1.2. Objectification by Emergent Context Translation
1.3. Information Theoretic Approach to Quantum Randomness
1.4. Entanglement and Emergence of Space-Time
- (i)
- in reversing Einstein’s verdict mentioned earlier, for (maximally) entangled states of a composite system , its constituents share a common identity—that is, they “are tied together” and can be considered “being aspects of a single entity” and, in particular, “not spatio-temporally separated at all”; so much so that any individuality or separateness vanishes.
- (ii)
- Space-time needs to be derived from quantum effects as an (emergent) epiphenomenon, a secondary effect or byproduct that arises vis-à-vis quantized systems and does not stand separate from or independent of them.
1.5. Peaceful Coexistence
- (i)
- Value definiteness of the individual constituents A and B and the fixing of their respective local shares at creation point: for this scenario, Peres gave a most insightful analysis [105]. Classical “singlet” states (e.g., obtained by the preservation of angular momentum) may exhibit certain (dis-)similar behaviors as compared to the quantum case. Classically, the joint system “carries” some “common share”—e.g., a hidden parameter such as the opposite angular momentum pseudovectors of the particles [106,107,108] along one and the same direction. These angular momentum pseudovectors are fixed and value definite for both parties or subsystems A and B already after their interaction. Therefore, the local information can in principle be used to produce local “copies” or “clones” of A and B. This is consistent with relativity theory because those shares remain fixed after their creation, so that whatever manipulation happens on one side does not alter the respective state or share on the other side.
- (ii)
- Value indefiniteness of the individual constituents A and B, but the fixing of their respective global shares at creation point: This may for instance be achieved by assuming a global value definite share or state of ; and yet by not allowing or “granting” definite states to the individual constituents A and B. Therefore, any attempt to copy them fails because of the absence of value definiteness. Quantum mechanics “guarantees” or realizes such a scenario by demanding that any entangled quantized pair exhibits a relational encoding. The states of the individual constituents A and B are not value definite: they lack “definiteness” or “memory” or information about individual properties of its constituents—the value definiteness “resides” in the relational (not the individual), holistic, global, “collective” properties among the constituents [59]. If such individual properties are “enforced” upon the constituents through measurement, they react with a context translation which, through nesting, introduces stochasticity because of the many degrees of freedom introduced from the “outside” environment. As a result, one obtains outcome independence, although one still obtains parameter dependence; but the latter is only “recoverable” after the outcomes from both sides are compared [109,110]; locality prevails [111,112].
2. Historic Perception of Randomness
2.1. Bowler Type Scenario of a Clockwork Universe
2.1.1. How Could Physics Facilitate and Support Such a View?
- (i)
- The description of a unique physical state as a function of some operational physical quantity such as time—indeed, the very notion of a total function (as opposed to partiality [77]), Laplace’s demon, causal [175] determinism, and the Principle of Sufficient Reason are scientific tropes and schemes signifying clockwork universes. They were widely held in pre-statistical physics and quantum areas until around fin de siècle.In ordinary differential equations of classical continuum mechanics and classical electrodynamics, the semantic notion of “determinism” is formalized by the uniqueness of the solutions, which are guaranteed by a Lipschitz continuity condition ([91], Chapter 17).
- (ii)
- The quantum state evolution is postulated to be unique and deterministic. Formally this is represented by a unitary transformation, that is, a generalized rotation mapping one orthonormal basis into another one. Such a state evolution is one-to-one and thus reversible and unique. However, if the preparation context differs from the measurement context, the quantum state does not identify outcomes uniquely, thereby allowing one particular kind of quantum indeterminacy. However, in general—in the case of coherent superposition or mixed states—the quantum state is not operationally accessible. Therefore this sort of quantum determinacy cannot be given any direct empirical meaning.
- (iii)
- Deterministic chaos is characterized by a unique initial value—a “seed” supposed to be taken from the mathematical continuum and thus incomputable and even random with probability one—whose information or digits are “revealed” by some suitable deterministic temporal evolution. (Idealized randomness of an infinite string is taken to be algorithmically incompressible [20].) To be suitable a temporal evolution needs to be very sensitive to changes of initial seeds such that very small fluctuations may produce very large effects. This is like Maxwell’s gap scenario discussed later.Like quantum evolution, deterministic chaos might be considered both an argument for and against classical determinism: because the assumption of the continuum renders almost all seeds formally random [20], thereby passing all statistical tests of randomness; in particular an “elementary” test such as Borel normality, certifying that all sequences of arbitrary length occur with the expected frequency, but also much stronger ones. Unfortunately, Borel normality is no guarantee of randomness because very regular sequences, for instance, the Champernowne constant [176] in base 10 is just the sequence obtained by concatenating successive numbers (encoded in base 10), turn out to be normal.In this respect, classical machinery designed to use extreme sensitivities of the temporal evolution to the initial seed, such as the Athenian [177] (kleroterion), for all practical purposes is not inferior to a quantum oracle for randomness, such as QUANTIS [18], based on the “evangelical” belief of irreducible quantum randomness [31].
- (iv)
- In system science or virtual physics, this modus could be referred to as a very restricted virtual reality, computational gaming environment, or simulation [178,179,180,181] (aka simulacrum), whereby it is assumed that there is no interference from “the outside” (aka beyond): the respective universe is hermetic. No participation is possible; only passive (without interference) observation.
2.1.2. How Could Physics Contradict Such a View?
- (i)
- Classical gaps are characterized by instabilities at singular points, such that very small fluctuations may produce very large effects. To quote Maxwell ([182], pp. 211,212), “for example, the rock loosed by frost and balanced on a singular point of the mountain-side, the little spark which kindles the great forest … At these points, influences whose physical magnitude is too small to be taken account of by a finite being, may produce results of the greatest importance”.
- (ii)
- (iii)
- Spontaneous symmetry breaking, a physical (re)source of non-uniqueness, is a spontaneous process by which a physical system in a symmetric state ends up in an asymmetric state. This is facilitated by some appropriate “Mexican hat” potential, not dissimilar to Norton’s dome or Maxwell’s ([182], pp. 211,212) “rock loosed by frost and balanced on a singular point” mentioned earlier.In particle physics, the Higgs mechanism, the spontaneous symmetry breaking of gauge symmetries, plays an important role in the origin of particle masses in the standard model of particle physics. All of these ruptures or breaches of uniqueness depend on the assumptions and models involved.
- (iv)
- Quantum indeterminacy, in particular, complementarity, contextuality (aka value indefiniteness), and aspects (such as the exact decay time) of the occurrence of certain single events are postulated to signify indeterminism.
2.2. Scenario of a Stochastic, Disorganized Universe
2.3. The Intermediate Curler Case
- (i)
- As has been mentioned earlier, in the classical domain of ordinary differential equations some breach of the Lipschitz continuity condition ([91], Chapter 17) could cause nonunique solutions. Often such types of gaps are identified with instabilities at their singular points ([182], pp. 211,212, [119,120], Sect. III, 13).
- (ii)
- As has also been discussed earlier, quantum complementarity, and, as an extension thereof, quantum contextuality (aka value indefiniteness) can be interpreted as the impossibility to co-represent [22,106,209] certain (even finite) sets of—necessarily counterfactual because they are complementary—quantum observables, relative to the assumptions. (One assumption entering those proofs are the (context) independence of outcomes of measurements for “intertwine” observables occurring in more than one context. For reasons of being able to intertwine contexts formalized by orthonormal bases this can only happen in vector spaces of dimension higher than two.) This is problematic as the corresponding experimental protocols (“prepare a pure state and measure a different one”) seem to suggest that they “reveal” some pre-existing property—indicated by the (non)occurrence of a detector click. This could be misleading, as the respective click might either be subject to debate and interpretation or merely signify the capacity of the measurement apparatus to “translate an improper question;” introducing stochastic noise [63]. (A debate [161,162] on the alleged “a posteriori teleportation” is an example for such a nonunique semantic perception of syntactically undisputed detector clicks.) This appears to be related to notorious inconsistencies in quantum physics proper [25,38,39,47,210] due to the assumption of irreversible quantum measurements.
- (iii)
- Aspects of certain individual, single events in quantized systems such as the time of emission or absorption of single quanta of light, are postulated to be indeterministic.
3. The (Un)known (Un)knowns
4. Summary
Funding
Acknowledgments
Conflicts of Interest
References
- Feynman, R.P. Simulating physics with computers. Int. J. Theor. Phys. 1982, 21, 467–488. [Google Scholar] [CrossRef]
- Deutsch, D. Quantum theory, the Church-Turing principle and the universal quantum computer. Proc. R. Soc. Lond. Ser. A 1985, 400, 97–117. [Google Scholar] [CrossRef]
- Deutsch, D.; Jozsa, R. Rapid solution of problems by quantum computation. Proc. R. Soc. 1992, 439, 553–558. [Google Scholar] [CrossRef]
- Nielsen, M.A.; Chuang, I.L. Quantum Computation and Quantum Information; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar] [CrossRef] [Green Version]
- Mermin, D.N. Quantum Computer Science; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar] [CrossRef]
- Svozil, K. Quantum hocus-pocus. Ethics Sci. Environ. Politics 2016, 16, 25–30. [Google Scholar] [CrossRef] [Green Version]
- Calude, C.S.; Calude, E. The Road to Quantum Computational Supremacy. In From Analysis to Visualization, Proceedings of the JBCC 2017: Jonathan M. Borwein Commemorative Conference, Newcastle, NSW, Australia, 25–29 September 2017; Springer: Cham, Switzerland, 2020; Volume 313, pp. 349–367. [Google Scholar] [CrossRef] [Green Version]
- Um, M.; Zhang, X.; Zhang, J.; Wang, Y.; Yangchao, S.; Deng, D.L.; Duan, L.M.; Kim, K. Experimental Certification of Random Numbers via Quantum Contextuality. Sci. Rep. 2013, 3, 1627. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Svozil, K. The quantum coin toss—Testing microphysical undecidability. Phys. Lett. A 1990, 143, 433–437. [Google Scholar] [CrossRef]
- Jennewein, T.; Achleitner, U.; Weihs, G.; Weinfurter, H.; Zeilinger, A. A Fast and Compact Quantum Random Number Generator. Rev. Sci. Instrum. 2000, 71, 1675–1680. [Google Scholar] [CrossRef] [Green Version]
- Stefanov, A.; Gisin, N.; Guinnard, O.; Guinnard, L.; Zbinden, H. Optical quantum random number generator. J. Mod. Opt. 2000, 47, 595–598. [Google Scholar] [CrossRef] [Green Version]
- Svozil, K. Three criteria for quantum random-number generators based on beam splitters. Phys. Rev. A 2009, 79, 054306. [Google Scholar] [CrossRef] [Green Version]
- Fürst, M.; Weier, H.; Nauerth, S.; Marangon, D.G.; Kurtsiefer, C.; Weinfurter, H. High speed optical quantum random number generation. Opt. Express 2010, 18, 13029–13037. [Google Scholar] [CrossRef]
- Calude, C.S.; Dinneen, M.J.; Dumitrescu, M.; Svozil, K. Experimental evidence of quantum randomness incomputability. Phys. Rev. A 2010, 82, 022102. [Google Scholar] [CrossRef] [Green Version]
- Abbott, A.A.; Calude, C.S.; Svozil, K. A quantum random number generator certified by value indefiniteness. Math. Struct. Comput. Sci. 2014, 24, e240303. [Google Scholar] [CrossRef] [Green Version]
- Pironio, S.; Acín, A.; Massar, S.; Boyer de la Giroday, A.; Matsukevich, D.N.; Maunz, P.; Olmschenk, S.; Hayes, D.; Luo, L.; Manning, T.A.; et al. Random numbers certified by Bell’s theorem. Nature 2010, 464, 1021–1024. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abbott, A.A.; Calude, C.S.; Dinneen, M.J.; Huang, N. Experimentally probing the algorithmic randomness and incomputability of quantum randomness. Phys. Scr. 2019, 94, 045103. [Google Scholar] [CrossRef] [Green Version]
- ID Quantique. QUANTIS. Quantum Number Generator; ID Quantique: Geneva, Switzerland, 2001–2010; Available online: https://www.idquantique.com/random-number-generation/products/quantis-random-number-generator/ (accessed on 8 September 2019).
- Bennett, C.H.; Brassard, G. Quantum Cryptography: Public key distribution and coin tossing. In Proceedings of the IEEE International Conference on Computers, Systems, and Signal Processing, Bangalore, India, 10–12 December 1984; pp. 175–179. [Google Scholar]
- Martin-Löf, P. The definition of random sequences. Inf. Control. 1966, 9, 602–619. [Google Scholar] [CrossRef] [Green Version]
- Abbott, A.A.; Calude, C.S.; Svozil, K. Value-indefinite observables are almost everywhere. Phys. Rev. A 2014, 89, 032109. [Google Scholar] [CrossRef] [Green Version]
- Abbott, A.A.; Calude, C.S.; Svozil, K. A variant of the Kochen-Specker theorem localising value indefiniteness. J. Math. Phys. 2015, 56, 102201. [Google Scholar] [CrossRef]
- Abbott, A.A.; Calude, C.S.; Conder, J.; Svozil, K. Strong Kochen-Specker theorem and incomputability of quantum randomness. Phys. Rev. A 2012, 86, 062109. [Google Scholar] [CrossRef] [Green Version]
- Bera, M.N.; Acín, A.; Kuś, M.; Mitchell, M.W.; Lewenstein, M. Randomness in quantum mechanics: Philosophy, physics and technology. Rep. Prog. Phys. 2017, 80, 124001. [Google Scholar] [CrossRef] [Green Version]
- Everett, H., III. ‘Relative State’ Formulation of Quantum Mechanics. Rev. Mod. Phys. 1957, 29, 454–462. [Google Scholar] [CrossRef] [Green Version]
- Vaidman, L. Quantum theory and determinism. Quantum Stud. Math. Found. 2014, 1, 5–38. [Google Scholar] [CrossRef] [Green Version]
- Svozil, K. “Haunted” quantum contextuality. arXiv 1999, arXiv:9907015. [Google Scholar]
- Svozil, K. Proposed direct test of a certain type of noncontextuality in quantum mechanics. Phys. Rev. A 2009, 80, 040102. [Google Scholar] [CrossRef] [Green Version]
- Griffiths, R.B. What quantum measurements measure. Phys. Rev. A 2017, 96, 032110. [Google Scholar] [CrossRef] [Green Version]
- Griffiths, R.B. Quantum measurements and contextuality. Philos. Trans. R. Soc. A 2019, 377, 20190033. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zeilinger, A. The message of the quantum. Nature 2005, 438, 743. [Google Scholar] [CrossRef]
- Von Neumann, J. Various Techniques Used in Connection With Random Digits. In Monte Carlo Method; National Bureau of Standards Applied Mathematics Series; Householder, A.S., Forsythe, G.E., Germond, H.H., Eds.; US Government Printing Office: Washington, DC, USA, 1951; Volume 12, Chapter 13; pp. 36–38. [Google Scholar]
- Von Neumann, J. John von Neumann: Collected Works. Volume V: Design of Computers, Theory of Automata and Numerical Analysis; Pergamon: New York, NY, USA, 1963. [Google Scholar]
- Abbott, A.A.; Calude, C.S. Von Neumann normalisation of a quantum random number generator. Computability 2012, 1, 59–83. [Google Scholar] [CrossRef] [Green Version]
- Clauser, J.F. Early History of Bell’s Theorem Theory and Experiment. In Foundations of Quantum Mechanics; World Scientific: Singapore, 1992; pp. 168–174. [Google Scholar] [CrossRef] [Green Version]
- Clauser, J.F. Early History of Bell’s Theorem. In Quantum (Un)speakables: From Bell to Quantum Information; Bertlmann, R., Zeilinger, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2002; pp. 61–96. [Google Scholar] [CrossRef]
- Schwinger, J. Unitary operators bases. Proc. Natl. Acad. Sci. USA 1960, 46, 570–579. [Google Scholar] [CrossRef] [Green Version]
- Von Neumann, J. Mathematische Grundlagen der Quantenmechanik, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 1996; (In German). [Google Scholar] [CrossRef]
- Von Neumann, J. Mathematical Foundations of Quantum Mechanics; Princeton University Press: Princeton, NJ, USA, 1955. (In English) [Google Scholar]
- Schrödinger, E. Die gegenwärtige Situation in der Quantenmechanik. Naturwissenschaften 1935, 23, 807–812. [Google Scholar] [CrossRef]
- Schrödinger, E. Die gegenwärtige Situation in der Quantenmechanik. Naturwissenschaften 1935, 23, 823–828. [Google Scholar] [CrossRef]
- Schrödinger, E. Die gegenwärtige Situation in der Quantenmechanik. Naturwissenschaften 1935, 23, 844–849. [Google Scholar] [CrossRef]
- London, F.; Bauer, E. La Theorie de L’observation en Mécanique Quantique; No. 775 of Actualités Scientifiques et Industrielles: Exposés de Physique Générale, Publiés Sous la Direction de Paul Langevin; Hermann: Paris, France, 1939. (In French) [Google Scholar]
- London, F.; Bauer, E. The Theory of Observation in Quantum Mechanics. In Quantum Theory and Measurement; Princeton University Press: Princeton, NJ, USA, 1983; pp. 217–259. (In English) [Google Scholar]
- Barrett, J.A. Everett’s pure wave mechanics and the notion of worlds. Eur. J. Philos. Sci. 2011, 1, 277–302. [Google Scholar] [CrossRef] [Green Version]
- Everett, H., III. The Theory of the Universal Wave Function. In The Everett Interpretation of Quantum Mechanics: Collected Works 1955–1980 with Commentary; Barrett, J.A., Byrne, P., Eds.; Princeton University Press: Princeton, NJ, USA, 2012; pp. 72–172. [Google Scholar]
- Wigner, E.P. Remarks on the mind-body question. In The Scientist Speculates; Good, I.J., Ed.; Springer: Berlin/Heidelberg, Germany, 1995; pp. 284–302. [Google Scholar] [CrossRef]
- Peres, A. Can we undo quantum measurements? Phys. Rev. D 1980, 22, 879–883. [Google Scholar] [CrossRef]
- Scully, M.O.; Drühl, K. Quantum eraser: A proposed photon correlation experiment concerning observation and “delayed choice” in quantum mechanics. Phys. Rev. A 1982, 25, 2208–2213. [Google Scholar] [CrossRef]
- Greenberger, D.M.; YaSin, A. “Haunted” measurements in quantum theory. Found. Phys. 1989, 19, 679–704. [Google Scholar] [CrossRef]
- Scully, M.O.; Englert, B.G.; Walther, H. Quantum optical tests of complementarity. Nature 1991, 351, 111–116. [Google Scholar] [CrossRef]
- Zajonc, A.G.; Wang, L.J.; Zou, X.Y.; Mandel, L. Quantum eraser. Nature 1991, 353, 507–508. [Google Scholar] [CrossRef]
- Kwiat, P.G.; Steinberg, A.M.; Chiao, R.Y. Observation of a “quantum eraser:” A revival of coherence in a two-photon interference experiment. Phys. Rev. A 1992, 45, 7729–7739. [Google Scholar] [CrossRef]
- Pfau, T.; Spälter, S.; Kurtsiefer, C.; Ekstrom, C.R.; Mlynek, J. Loss of Spatial Coherence by a Single Spontaneous Emission. Phys. Rev. Lett. 1994, 73, 1223–1226. [Google Scholar] [CrossRef] [Green Version]
- Chapman, M.S.; Hammond, T.D.; Lenef, A.; Schmiedmayer, J.; Rubenstein, R.A.; Smith, E.; Pritchard, D.E. Photon Scattering from Atoms in an Atom Interferometer: Coherence Lost and Regained. Phys. Rev. Lett. 1995, 75, 3783–3787. [Google Scholar] [CrossRef] [Green Version]
- Herzog, T.J.; Kwiat, P.G.; Weinfurter, H.; Zeilinger, A. Complementarity and the quantum eraser. Phys. Rev. Lett. 1995, 75, 3034–3037. [Google Scholar] [CrossRef]
- Englert, B.G.; Schwinger, J.; Scully, M.O. Is spin coherence like Humpty-Dumpty? I. Simplified treatment. Found. Phys. 1988, 18, 1045–1056. [Google Scholar] [CrossRef]
- Schwinger, J.; Scully, M.O.; Englert, B.G. Is spin coherence like Humpty-Dumpty? II. General theory. Z. Für Phys. Atoms Mol. Clust. 1988, 10, 135–144. [Google Scholar] [CrossRef]
- Zeilinger, A. A Foundational Principle for Quantum Mechanics. Found. Phys. 1999, 29, 631–643. [Google Scholar] [CrossRef]
- Yanofsky, N.S. The Mind and the Limitations of Physics; Spider Science: Brooklyn, NY, USA, 2019. [Google Scholar]
- Gallois, A. Identity Over Time. In The Stanford Encyclopedia of Philosophy; Zalta, E.N., Ed.; Metaphysics Research Lab, Stanford University: Stanford, CA, USA, 2016. [Google Scholar]
- Gallois, A. Occasions of Identity: A Study in the Metaphysics of Persistence, Change, and Sameness; Bantam Books: New York, NY, USA, 2011. [Google Scholar] [CrossRef]
- Svozil, K. Quantum information via state partitions and the context translation principle. J. Mod. Opt. 2004, 51, 811–819. [Google Scholar] [CrossRef]
- Svozil, K. Unscrambling the Quantum Omelette. Int. J. Theor. Phys. 2014, 53, 3648–3657. [Google Scholar] [CrossRef] [Green Version]
- Myrvold, W.C. Statistical mechanics and thermodynamics: A Maxwellian view. Stud. Hist. Philos. Sci. Part B 2011, 42, 237–243. [Google Scholar] [CrossRef] [Green Version]
- Bohr, N. Discussion with Einstein on epistemological problems in atomic physics. In Albert Einstein: Philosopher-Scientist; Schilpp, P.A., Ed.; The Library of Living Philosophers: Evanston, IL, USA, 1949; pp. 200–241. [Google Scholar] [CrossRef]
- Foti, C.; Heinosaari, T.; Maniscalco, S.; Verrucchi, P. Whenever a quantum environment emerges as a classical system, it behaves like a measuring apparatus. Quantum 2019, 3, 179. [Google Scholar] [CrossRef]
- Glauber, R.J. Amplifiers, Attenuators and Schrödingers Cat. In Quantum Theory of Optical Coherence; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2007; pp. 537–576. [Google Scholar] [CrossRef]
- Glauber, R.J. Amplifiers, Attenuators, and Schrödinger’s Cat. Ann. N. Y. Acad. Sci. 1986, 480, 336–372. [Google Scholar] [CrossRef]
- Pitowsky, I. Infinite and finite Gleason’s theorems and the logic of indeterminacy. J. Math. Phys. 1998, 39, 218–228. [Google Scholar] [CrossRef]
- Svozil, K. New Forms of Quantum Value Indefiniteness Suggest That Incompatible Views on Contexts Are Epistemic. Entropy 2018, 20, 406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Specker, E. Die Logik nicht gleichzeitig entscheidbarer Aussagen. Dialectica 1960, 14, 239–246. [Google Scholar] [CrossRef]
- Specker, E. Selecta; Birkhäuser Verlag: Basel, Switzerland, 1990. [Google Scholar] [CrossRef]
- Svozil, K. Quantum Scholasticism: On Quantum Contexts, Counterfactuals, and the Absurdities of Quantum Omniscience. Inf. Sci. 2009, 179, 535–541. [Google Scholar] [CrossRef] [Green Version]
- Cabello, A.; Portillo, J.R.; Solís, A.; Svozil, K. Minimal true-implies-false and true-implies-true sets of propositions in noncontextual hidden-variable theories. Phys. Rev. A 2018, 98, 012106. [Google Scholar] [CrossRef] [Green Version]
- Svozil, K. Classical Predictions for Intertwined Quantum Observables Are Contingent and Thus, Inconclusive. Quantum Rep. 2020, 2, 278–292. [Google Scholar] [CrossRef]
- Kleene, S.C. General recursive functions of natural numbers. Math. Ann. 1936, 112, 727–742. [Google Scholar] [CrossRef]
- Brukner, Č.; Zeilinger, A. Operationally Invariant Information in Quantum Measurements. Phys. Rev. Lett. 1999, 83, 3354–3357. [Google Scholar] [CrossRef] [Green Version]
- Brukner, Č.; Zeilinger, A. Malus’ law and quantum information. Acta Phys. Slovaca 1999, 49, 647–652. Available online: https://www.univie.ac.at/qfp/publications3/pdffiles/1999-08.pdf (accessed on 8 September 2019).
- Grangier, P.; Auffèves, A. What is quantum in quantum randomness? Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2018, 376, 20170322. [Google Scholar] [CrossRef] [Green Version]
- von Neumann, J. On infinite direct products. Compositio Math. 1939, 6, 1–77. Available online: http://www.numdam.org/item/CM_1939__6__1_0/ (accessed on 8 September 2019).
- Auffèves, A.; Grangier, P. A Generic Model for Quantum Measurements. Entropy 2019, 21, 904. [Google Scholar] [CrossRef] [Green Version]
- Calude, C.S.; Dinneen, M.J. Exact Approximations of Omega Numbers. Int. J. Bifurc. Chaos 2007, 17, 1937–1954. [Google Scholar] [CrossRef] [Green Version]
- Einstein, A. Letter to Schrödinger. Old Lyme, dated 19.6.35, Einstein Archives 22-047. Available online: https://einsteinpapers.press.princeton.edu (accessed on 22 April 2021).
- Von Meyenn, K. Eine Entdeckung von Ganz außerordentlicher Tragweite. Schrödingers Briefwechsel zur Wellenmechanik und Zum Katzenparadoxon; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar] [CrossRef]
- Howard, D. Einstein on locality and separability. Stud. Hist. Philos. Sci. Part A 1985, 16, 171–201. [Google Scholar] [CrossRef]
- Einstein, A.; Podolsky, B.; Rosen, N. Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 1935, 47, 777–780. [Google Scholar] [CrossRef] [Green Version]
- Schrödinger, E. Probability relations between separated systems. Math. Proc. Camb. Philos. Soc. 1936, 32, 446–452. [Google Scholar] [CrossRef]
- Schrödinger, E. Discussion of Probability Relations between Separated Systems. Math. Proc. Camb. Philos. Soc. 1935, 31, 555–563. [Google Scholar] [CrossRef]
- Svozil, K. A note on the statistical sampling aspect of delayed choice entanglement swapping. In Probing the Meaning of Quantum Mechanics; World Scientific: Singapore, 2018; pp. 1–9. [Google Scholar] [CrossRef] [Green Version]
- Svozil, K. Physical (A)Causality; Fundamental Theories of Physics; Springer International Publishing: Berlin/Heidelberg, Germany, 2018; Volume 192. [Google Scholar] [CrossRef] [Green Version]
- Bell, J.S. Against ‘measurement’. Phys. Blätter 1992, 48, 267. [Google Scholar] [CrossRef]
- Bell, J.S. Against ‘measurement’. Phys. World 1990, 3, 33–41. [Google Scholar] [CrossRef]
- Van Raamsdonk, M. Building up spacetime with quantum entanglement. Gen. Relativ. Gravit. 2010, 42, 2323–2329. [Google Scholar] [CrossRef]
- Van Raamsdonk, M. Building up spacetime with quantum entanglement. Int. J. Mod. Phys. D 2010, 19, 2429–2435. [Google Scholar] [CrossRef]
- Faulkner, T.; Guica, M.; Hartman, T.; Myers, R.C.; Raamsdonk, M.V. Gravitation from entanglement in holographic CFTs. J. High Energy Phys. 2014, 2014. [Google Scholar] [CrossRef] [Green Version]
- Swingle, B.; Van Raamsdonk, M. Universality of Gravity from Entanglement. arXiv 2014, arXiv:1405.2933. [Google Scholar]
- Jacobson, T. Entanglement Equilibrium and the Einstein Equation. Phys. Rev. Lett. 2016, 116, 201101. [Google Scholar] [CrossRef] [Green Version]
- Cao, C.; Carroll, S.M.; Michalakis, S. Space from Hilbert space: Recovering geometry from bulk entanglement. Phys. Rev. D 2017, 95, 024031. [Google Scholar] [CrossRef] [Green Version]
- Swingle, B. Spacetime from Entanglement. Annu. Rev. Condens. Matter Phys. 2018, 9, 345–358. [Google Scholar] [CrossRef]
- Musser, G. What Is Spacetime? Nature 2018, 557, S3–S6. [Google Scholar] [CrossRef]
- Knuth, K.H.; Bahreyni, N. The Physics of Events: A Potential Foundation for Emergent Space-Time. arXiv 2012, arXiv:1209.0881. [Google Scholar]
- Couch, J.; Eccles, S.; Nguyen, P.; Swingle, B.; Xu, S. Speed of quantum information spreading in chaotic systems. Phys. Rev. B 2020, 102, 045114. [Google Scholar] [CrossRef]
- Knuth, K.H.; Powell, R.M.; Reali, P.A. Estimating Flight Characteristics of Anomalous Unidentified Aerial Vehicles. Entropy 2019, 21, 939. [Google Scholar] [CrossRef] [Green Version]
- Peres, A. Unperformed experiments have no results. Am. J. Phys. 1978, 46, 745–747. [Google Scholar] [CrossRef]
- Peres, A. Quantum Theory: Concepts and Methods; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1993. [Google Scholar]
- Toner, B.F.; Bacon, D. Communication Cost of Simulating Bell Correlations. Phys. Rev. Lett. 2003, 91, 187904. [Google Scholar] [CrossRef] [Green Version]
- Svozil, K. Communication cost of breaking the Bell barrier. Phys. Rev. A 2005, 72, 050302. [Google Scholar] [CrossRef] [Green Version]
- Shimony, A. Controllable and uncontrollable non-locality. In Proceedings of the International Symposium Foundations of Quantum Mechanics in the Light of New Technology; Kamefuchi, S., Gakkai, N.B., Eds.; Physical Society of Japan: Tokyo, Japan, 1984; pp. 225–230. [Google Scholar]
- Shimony, A. Events and Processes in the Quantum World. In Quantum Concepts in Space and Time; Penrose, R., Isham, C.I., Eds.; Clarendon Press: Oxford, UK, 1986; pp. 182–203. [Google Scholar]
- Griffiths, R.B. Quantum Locality. Found. Phys. 2010, 41, 705–733. [Google Scholar] [CrossRef] [Green Version]
- Griffiths, R.B. Nonlocality claims are inconsistent with Hilbert-space quantum mechanics. Phys. Rev. A 2020, 101. [Google Scholar] [CrossRef] [Green Version]
- Popescu, S.; Rohrlich, D. Action and passion at a distance. In Potentiality, Entanglement and Passion-at-a-Distance: Quantum Mechanical Studies for Abner Shimony, Volume Two (Boston Studies in the Philosophy of Science); Cohen, R.S., Horne, M., Stachel, J., Eds.; Springer: Dordrecht, The Netherlands, 1997; pp. 197–206. [Google Scholar] [CrossRef] [Green Version]
- Krenn, G.; Svozil, K. Stronger-than-quantum correlations. Found. Phys. 1998, 28, 971–984. [Google Scholar] [CrossRef] [Green Version]
- Popescu, S. Nonlocality beyond quantum mechanics. Nat. Phys. 2014, 10, 264–270. [Google Scholar] [CrossRef]
- Herbert, N. FLASH—A superluminal communicator based upon a new kind of quantum measurement. Found. Phys. 1982, 12, 1171–1179. [Google Scholar] [CrossRef]
- Svozil, K. What is wrong with SLASH? arXiv 2001, arXiv:0103166. [Google Scholar]
- Swinburne, R. The Concept of Miracle; New Studies in the Philosophy of Religion; Palgrave Macmillan: London, UK, 1970. [Google Scholar] [CrossRef]
- Frank, P. Das Kausalgesetz und seine Grenzen; Springer: Vienna, Austria, 1932. [Google Scholar]
- Frank, P.; Cohen, R.S. (Eds.) The Law of Causality and its Limits (Vienna Circle Collection); Springer: Vienna, Austria, 1997. [Google Scholar] [CrossRef]
- Melamed, Y.Y.; Lin, M. Principle of Sufficient Reason. In The Stanford Encyclopedia of Philosophy; Zalta, E.N., Ed.; Metaphysics Research Lab, Stanford University: Stanford, CA, USA, 2020. [Google Scholar]
- Wigner, E.P. The unreasonable effectiveness of mathematics in the natural sciences. Richard Courant Lecture delivered at New York University, May 11, 1959. Commun. Pure Appl. Math. 1960, 13, 1–14. [Google Scholar] [CrossRef]
- Berkeley, G. A Treatise Concerning the Principles of Human Knowledge; Skinner–Row: Dublin, Ireland, 1710. [Google Scholar]
- Stace, W.T. The Refutation of Realism. Mind 1934, 43, 145–155. [Google Scholar] [CrossRef]
- Stace, W.T. The Refutation of Realism. In Readings in Philosophical Analysis; Feigl, H., Sellars, W., Eds.; Appleton-Century-Crofts: New York, NY, USA, 1949; pp. 364–372. [Google Scholar] [CrossRef]
- Goldschmidt, T.; Pearce, K.L. Idealism: New Essays in Metaphysics; Oxford University Press: Oxford, UK, 2017. [Google Scholar] [CrossRef]
- Descartes, R. Meditations on First Philosophy; Translated by John Cottingham; Cambridge University Press: Cambridge, UK, 1996. [Google Scholar]
- Nietzsche, F. Ueber Wahrheit und Lüge im Außermoralischen Sinne; Digital Critical Edition of the Complete Works and Letters, Based on the Critical Text; Colli, G., Montinari, M., D’Iorio, P., Eds.; de Gruyter: Berlin, Germany, 2009. [Google Scholar]
- Derrida, J. Et Cetera. In Deconstructions; Royle, N., Ed.; Palgrave Publishers Ltd. (Formerly Macmillan Press Ltd.): New York, NY, USA, 2000; Chapter 15. [Google Scholar] [CrossRef]
- Artaud, A. Le Théâtre et Son Double; Gallimard: Paris, France, 1938. [Google Scholar]
- Artaud, A. The Theatre and Its Double; Translated by Victor Corti; Alma Classics Limited: Richmond Surrey, UK, 2010. [Google Scholar]
- Hertz, H. Prinzipien der Mechanik; Johann Ambrosius Barth (Arthur Meiner): Leipzig, Germany, 1894. [Google Scholar]
- Hertz, H. The Principles of Mechanics Presented in a New Form; MacMillan and Co., Ltd.: New York, NY, USA, 1899. [Google Scholar]
- Plato. The Republic; Translated by Tom Griffith; Ferrari, G.R.F., Ed.; Cambridge Texts in the History of Political Thought; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Feyerabend, P.K. Explanation, reduction, and empiricism. In Scientific Explanation, Space, and Time; Minnesota Studies in the Philosophy of Science; University of Minnesota Press: Minneapolis, MA, USA, 1962; Volume III, pp. 28–97. [Google Scholar]
- Feyerabend, P.K. Realism, Rationalism and Scientific Method; Philosophical Papers; Cambridge University Press: Cambridge, UK, 1981; Volume 1. [Google Scholar]
- Kuhn, T.S. The Structure of Scientific Revolutions, 4th ed.; University of Chicago Press: Chicago, IL, USA, 2012. [Google Scholar]
- Oberheim, E. On the historical origins of the contemporary notion of incommensurability: Paul Feyerabend’s assault on conceptual conservativism. Stud. Hist. Philos. Sci. Part A 2005, 36, 363–390. [Google Scholar] [CrossRef] [Green Version]
- Oberheim, E.; Hoyningen-Huene, P. The Incommensurability of Scientific Theories. In The Stanford Encyclopedia of Philosophy; Zalta, E.N., Ed.; Metaphysics Research Lab, Stanford University: Stanford, CA, USA, 2018. [Google Scholar]
- Pigliucci, M. Nonsense on Stilts, 2nd ed.; University of Chicago Press: Chicago, IL, USA; London, UK, 2018. [Google Scholar] [CrossRef]
- Lakatos, I. The Methodology of Scientific Research Programmes; Philosophical Papers; Worrall, J., Currie, G., Eds.; Cambridge University Press: Cambridge, UK, 2012; Volume 1. [Google Scholar] [CrossRef]
- Lakatos, I. Falsification and the methodology of scientific research programmes. In The Methodology of Scientific Research Programmes; Philosophical Papers; Cambridge University Press: Cambridge, UK, 2012; Volume 1. [Google Scholar] [CrossRef]
- Schopenhauer, A. Die Welt als Wille und Vorstellung. Erster Band, 3rd ed.; Georg Müller: München, Germany, 1912. [Google Scholar]
- Nietzsche, F. Also Sprach Zarathustra. Ein Buch für Alle und Keinen; Digital Critical Edition of the Complete Works and Letters, Based on the Critical Text; Colli, G., Montinari, M., D’Iorio, P., Eds.; de Gruyter: Berlin, Germany, 2009. [Google Scholar]
- Nietzsche, F. Ecce Homo. Wie Man Wird, Was Man Ist; Digital Critical Edition of the Complete Works and Letters, Based on the Critical Text; Colli, G., Montinari, M., D’Iorio, P., Eds.; de Gruyter: Berlin, Germany, 2009. [Google Scholar]
- Camus, A. Le Mythe de Sisyphe (English Translation: The Myth of Sisyphus); Gallimard: Paris, France, 1942. [Google Scholar]
- Popper, K.R. Logik der Forschung; Springer: Vienna, Austria, 1934. [Google Scholar] [CrossRef]
- Popper, K.R. The Logic of Scientific Discovery, 2nd ed.; Hutchinson & Co and Routledge: New York, NY, USA, 2002. [Google Scholar] [CrossRef]
- Klein, J.; Giglioni, G. Francis Bacon. In The Stanford Encyclopedia of Philosophy; Zalta, E.N., Ed.; Metaphysics Research Lab, Stanford University: Stanford, CA, USA, 2020. [Google Scholar]
- Bridgman, P.W. The Logic of Modern Physics; Macmillan: New York, NY, USA, 1927. [Google Scholar]
- Bridgman, P.W. A Physicist’s Second Reaction to Mengenlehre. Scr. Math. 1934, 2, 101–117, 224–234. [Google Scholar]
- Bridgman, P.W. The Nature of Physical Theory; Dover Publications: New York, NY, USA, 1936. [Google Scholar]
- Bridgman, P.W. Reflections of a Physicist; Philosophical Library: New York, NY, USA, 1950. [Google Scholar]
- Bridgman, P.W. The Nature of Some of Our Physical Concepts; Philosophical Library: New York, NY, USA, 1952. [Google Scholar]
- Hume, D. A Treatise of Human Nature: Texts; The Clarendon Edition of the Works of David Hume; Norton, D.F., Norton, M.J., Eds.; Oxford University Press: Oxford, UK, 2007; Volume 1, pp. 1739–1740. [Google Scholar] [CrossRef]
- Hume, D. An Enquiry Concerning Human Understanding; Oxford World’s Classics; Millican, P., Ed.; Oxford University Press: Oxford, UK, 2007. [Google Scholar]
- Svozil, K. What Is so Special about Quantum Clicks? Entropy 2020, 22, 602. [Google Scholar] [CrossRef]
- Aspect, A.; Grangier, P.; Roger, G. Experimental Tests of Realistic Local Theories via Bell’s Theorem. Phys. Rev. Lett. 1981, 47, 460–463. [Google Scholar] [CrossRef]
- Aspect, A.; Dalibard, J.; Roger, G. Experimental Test of Bell’s Inequalities Using Time-Varying Analyzers. Phys. Rev. Lett. 1982, 49, 1804–1807. [Google Scholar] [CrossRef] [Green Version]
- Zeilinger, A. Testing Bell’s Inequalities with Periodic Switching. Phys. Lett. A 1986, 118, 1–2. [Google Scholar] [CrossRef]
- Braunstein, S.L.; Kimble, H.J. A posteriori teleportation. Nature 1998, 394, 840–841. [Google Scholar] [CrossRef]
- Bouwmeester, D.; Pan, J.W.; Daniell, M.; Weinfurter, H.; Zukowski, M.; Zeilinger, A. Reply: A posteriori teleportation. Nature 1998, 394, 841. [Google Scholar] [CrossRef]
- Bouwmeester, D.; Pan, J.W.; Mattle, K.; Eibl, M.; Weinfurter, H.; Zeilinger, A. Experimental quantum teleportation. Nature 1997, 390, 575–579. [Google Scholar] [CrossRef] [Green Version]
- Bennett, C.H.; Brassard, G.; Crépeau, C.; Jozsa, R.; Peres, A.; Wootters, W.K. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 1993, 70, 1895–1899. [Google Scholar] [CrossRef] [Green Version]
- Svozil, K. Extensions of Hardy-type true-implies-false gadgets to classically obtain indistinguishability. Phys. Rev. A 2021, 103, 022204. [Google Scholar] [CrossRef]
- Gold, M.E. Language identification in the limit. Inf. Control. 1967, 10, 447–474. [Google Scholar] [CrossRef] [Green Version]
- Blum, L.; Blum, M. Toward a mathematical theory of inductive inference. Inf. Control. 1975, 28, 125–155. [Google Scholar] [CrossRef] [Green Version]
- Angluin, D.; Smith, C.H. Inductive Inference: Theory and Methods. ACM Comput. Surv. 1983, 15, 237–269. [Google Scholar] [CrossRef]
- Adleman, L.M.; Blum, M. Inductive Inference and Unsolvability. J. Symb. Log. 1991, 56, 891–900. [Google Scholar] [CrossRef]
- Li, M.; Vitányi, P.M.B. Inductive reasoning and Kolmogorov complexity. J. Comput. Syst. Sci. 1992, 44, 343–384. [Google Scholar] [CrossRef] [Green Version]
- Gandy, R.O. Limitations to Mathematical Knowledge. In Logic Colloquium ’80, Proceedings of the European Summer Meeting of the Association for Symbolic Logic, Prague, Czech Republic, 24–30 August 1980; van Dalen, D., Lascar, D., Smiley, J., Eds.; North Holland: Amsterdam, The Netherlands, 1982; pp. 129–146. [Google Scholar]
- Svozil, K. Randomness & Undecidability in Physics; World Scientific: Singapore, 1993. [Google Scholar] [CrossRef]
- Svozil, K. Undecidability everywhere? In Boundaries and Barriers. On the Limits to Scientific Knowledge; Casti, J.L., Karlquist, A., Eds.; Addison-Wesley: Reading, MA, USA, 1996; pp. 215–237. [Google Scholar]
- Svozil, K. Physical Unknowables. In Kurt Gödel and the Foundations of Mathematics; Baaz, M., Papadimitriou, C.H., Putnam, H.W., Scott, D.S., Harper, C.L., Jr., Eds.; Cambridge University Press: Cambridge, UK, 2011; pp. 213–251. [Google Scholar] [CrossRef]
- Norton, J.D. Causation as Folk Science. Philos. Impr. 2003, 3, 1–22. [Google Scholar]
- Sloane, N.J.A. A033307 Decimal Expansion of Champernowne Constant (or Mahler’s Number), Formed by Concatenating the Positive Integers. 2019. Available online: https://oeis.org/A033307 (accessed on 8 September 2019).
- Dow, S. Aristotle, the Kleroteria, and the Courts. Harv. Stud. Class. Philol. 1939, 50, 1–34. [Google Scholar] [CrossRef]
- Toffoli, T. The Role of the Observer in Uniform Systems. In Applied General Systems Research: Recent Developments and Trends; Klir, G.J., Ed.; Springer US: New York, NY, USA, 1978; pp. 395–400. [Google Scholar] [CrossRef]
- Fredkin, E. Digital mechanics. An informational process based on reversible universal cellular automata. Physica 1990, D45, 254–270. [Google Scholar] [CrossRef]
- Svozil, K. A constructivist manifesto for the physical sciences—Constructive re-interpretation of physical undecidability. In The Foundational Debate: Complexity and Constructivity in Mathematics and Physics. Vienna Circle Institute Yearbook; Schimanovich, W.D., Köhler, E., Stadler, F., Eds.; Springer: Berlin/Heidelberg, Germany, 1995; pp. 65–88. [Google Scholar] [CrossRef]
- Bostrom, N. Are We Living in a Computer Simulation? Philos. Q. 2003, 53, 243–255. [Google Scholar] [CrossRef]
- Maxwell, J.C. Does the progress of Physical Science tend to give any advantage to the opinion of Necessity (or Determinism) over that of the Contingency of Events and the Freedom of the Will? In The life of James Clerk Maxwell. With a Selection from Their Correspondence and Occasional Writings and a Sketch of Their Contributions to Science, 2nd ed.; Campbell, L., Garnett, W., Eds.; MacMillan: London, UK, 1999. [Google Scholar]
- Norton, J.D. The Dome: An Unexpectedly Simple Failure of Determinism. Philos. Sci. 2008, 75, 786–798. [Google Scholar] [CrossRef] [Green Version]
- van Strien, M. The Norton Dome and the Nineteenth Century Foundations of Determinism. J. Gen. Philos. Sci. 2014, 45, 167–185. [Google Scholar] [CrossRef] [Green Version]
- Smoluchowski, M. Experimentell nachweisbare, der üblichen Thermodynamik widersprechende Molekularphänomene. Phys. Z. 1912, 13, 1069–1080. [Google Scholar]
- Uffink, J. Subjective Probability and Statistical Physics. In Probabilities in Physics; Beisbart, C., Hartmann, S., Eds.; Oxford University Press: Oxford, UK, 2011; pp. 25–49. [Google Scholar] [CrossRef] [Green Version]
- Hamilton, W.D. The Evolution of Altruistic Behavior. Am. Nat. 1963, 97, 354–356. [Google Scholar] [CrossRef] [Green Version]
- Watzlawick, P.; Beavin, J.H.; Jackson, D.D. Pragmatics of Human Communication: A Study of Interactional Patterns, Pathologies, and Paradoxes; W. W. Norton & Company: New York, NY, USA, 1967. [Google Scholar]
- Born, M. Zur Quantenmechanik der Stoßvorgänge. Z. Für Phys. 1926, 37, 863–867. [Google Scholar] [CrossRef]
- Hiebert, E.N. Common Frontiers of the Exact Sciences and the Humanities. Phys. Perspect. 2000, 2, 6–29. [Google Scholar] [CrossRef]
- Stöltzner, M. Vienna Indeterminism: Mach, Boltzmann, Exner. Synthese 1999, 119, 85–111. [Google Scholar] [CrossRef]
- Schweidler, E.V. Über Schwankungen der radioaktiven Umwandlung. In Premier Congres International Pour L’etude de la Radiologie et de I’ionisation tenu a Liege du 12 au 14 Septembre 1905; H. Dunod & E. Pinat: Paris, France, 1906; pp. 1–3. [Google Scholar]
- Exner, F.S. Über Gesetze in Naturwissenschaft und Humanistik: Inaugurationsrede gehalten am 15. Oktober 1908; Hölder, Ebooks on Demand Universitätsbibliothek Wien: Vienna, Austria, 2016; Available online: https://hdl.handle.net/11353/10.451413 (accessed on 22 April 2021).
- Armstrong, D.M. What Is a Law of Nature? Cambridge Studies in Philosophy, Cambridge University Press: Cambridge, UK, 1983. [Google Scholar] [CrossRef]
- van Fraassen, B.C. Laws and Symmetry; Oxford University Press: Oxford, UK, 2003. [Google Scholar] [CrossRef]
- Calude, C.; Meyerstein, F.W. Is the universe lawful? Chaos Solitons Fractals 1999, 10, 1075–1084. [Google Scholar] [CrossRef]
- Rosen, J. Lawless Universe: Science and the Hunt for Reality; The John Hopkins University Press: Balrtimreo, MD, USA, 2010. [Google Scholar]
- Calude, C.S.; Meyerstein, W.F.; Salomaa, A. The Universe is Lawless or “Panton chrematon metron anthropon einai”. In Computable Universe: Understanding and Exploring Nature as Computation; Zenil, H., Ed.; World Scientific: Singapore, 2013; pp. 525–537. [Google Scholar] [CrossRef]
- Yanofsky, N. Chaos makes the multiverse unnecessary. Nautilus 2017, 66, 1–16. [Google Scholar]
- Mueller, M.P. Could the physical world be emergent instead of fundamental, and why should we ask? arXiv 2017, arXiv:1712.01816. [Google Scholar]
- Cabello, A. Physical origin of quantum nonlocality and contextuality. arXiv 2019, arXiv:1801.06347. [Google Scholar]
- Calude, C.S.; Svozil, K. Spurious, Emergent Laws in Number Worlds. Philosophies 2019, 4, 17. [Google Scholar] [CrossRef] [Green Version]
- Clark, K.J. Is God a Bowler or a Curler? In Proceedings of the Randomness and Providence Workshop, Providence, RI, USA, 9–12 May 2017. [Google Scholar]
- Voltaire, F. A Philosophical Dictionary; Derived from The Works of Voltaire, A Contemporary Version; E.R. DuMont: New York, NY, USA, 1764. [Google Scholar]
- Galouye, D.F. Simulacron 3; Bantam Books: New York, NY, USA, 1964. [Google Scholar]
- Egan, G. Permutation City; Hachette: Paris, France, 1994. [Google Scholar]
- Svozil, K. Extrinsic-intrinsic concept and complementarity. In Inside Versus Outside; Springer Series in Synergetics; Atmanspacher, H., Dalenoort, G.J., Eds.; Springer: Berlin/Heidelberg, Germany, 1994; Volume 63, pp. 273–288. [Google Scholar] [CrossRef] [Green Version]
- Eccles, J.C. The Mind-Brain Problem Revisited: The Microsite Hypothesis. In The Principles of Design and Operation of the Brain; Eccles, J.C., Creutzfeldt, O., Eds.; Springer: Berlin/Heidelberg, Germany, 1990; pp. 549–572. [Google Scholar] [CrossRef] [Green Version]
- Kochen, S.; Specker, E.P. The Problem of Hidden Variables in Quantum Mechanics. J. Math. Mech. 1967, 17, 59–87. [Google Scholar] [CrossRef]
- Everett, H., III. The Everett Interpretation of Quantum Mechanics: Collected Works 1955–1980 with Commentary; Barrett, J.A., Byrne, P., Eds.; Princeton University Press: Princeton, NJ, USA, 2012. [Google Scholar]
- Jaynes, E.T. Probability Theory as Logic. In Maximum Entropy and Bayesian Methods; Fougère, P.F., Ed.; Springer: Dordrecht, The Netherlands, 1990; pp. 1–16. [Google Scholar] [CrossRef]
- Freud, S. Ratschläge für den Arzt bei der psychoanalytischen Behandlung. In Gesammelte Werke. Chronologisch Geordnet. Achter Band. Werke aus den Jahren 1909–1913; Freud, A., Bibring, E., Hoffer, W., Kris, E., Isakower, O., Eds.; Fischer: Frankfurt am Main, Germany, 1999; pp. 376–387. [Google Scholar]
- Freud, S. Recommendations to Physicians Practising Psycho-Analysis. In The Standard Edition of the Complete Psychological Works of Sigmund Freud, Volume XII (1911–1913): The Case of Schreber, Papers on Technique and Other Works; Freud, A.F.A., Strachey, A., Tyson, A., Eds.; The Hogarth Press and the Institute of Psycho-Analysis: London, UK, 1958; pp. 109–120. [Google Scholar]
- Hahn, H. Die Bedeutung der wissenschaftlichen Weltauffassung, insbesondere für Mathematik und Physik. Erkenntnis 1930, 1, 96–105. [Google Scholar] [CrossRef]
- Carnap, R. Überwindung der Metaphysik durch logische Analyse der Sprache. Erkenntnis 1931, 2, 219–241. [Google Scholar] [CrossRef]
- Carnap, R. The Elimination of Metaphysics Through Logical Analysis of Language. In Logical Positivism; Translated by Arp, A.; Ayer, A.J., Ed.; Free Press: New York, NY, USA, 1959; pp. 60–81. [Google Scholar]
- Gödel, K. Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme. Monatshefte für Mathematik und Physik 1931, 38, 173–198. [Google Scholar] [CrossRef]
- Turing, A.M. On computable numbers, with an application to the Entscheidungsproblem. Proc. Lond. Math. Soc. Ser. 2 1937, 42, 230–265. [Google Scholar] [CrossRef]
- Turing, A.M. On computable numbers, with an application to the Entscheidungsproblem. Proc. Lond. Math. Soc. Ser. 2 1938, 43, 544–546. [Google Scholar] [CrossRef]
- Smullyan, R.M. Gödel’s Incompleteness Theorems; Oxford Logic Guides 19; Oxford University Press: Oxford, UK, 2020. [Google Scholar] [CrossRef]
- Smullyan, R.M. Recursion Theory for Metamathematics; Oxford Logic Guides 22; Oxford University Press: Oxford, UK, 2020. [Google Scholar] [CrossRef]
- Smullyan, R.M. Diagonalization and Self-Reference; Oxford Logic Guides; Clarendon Press: Oxford, UK, 1994; Volume 27. [Google Scholar]
- Chaitin, G.J. Algorithmic Information Theory; Cambridge Tracts in Theoretical Computer Science; Cambridge University Press: Cambridge, UK, 2003; Volume 1. [Google Scholar] [CrossRef]
- Augustine of Hippo. In Confessions; Translated by Thomas Williams; Hackett Publishing Company, Inc.: Indianapolis, IN, USA, 2019.
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Svozil, K. Quantum Randomness is Chimeric. Entropy 2021, 23, 519. https://doi.org/10.3390/e23050519
Svozil K. Quantum Randomness is Chimeric. Entropy. 2021; 23(5):519. https://doi.org/10.3390/e23050519
Chicago/Turabian StyleSvozil, Karl. 2021. "Quantum Randomness is Chimeric" Entropy 23, no. 5: 519. https://doi.org/10.3390/e23050519
APA StyleSvozil, K. (2021). Quantum Randomness is Chimeric. Entropy, 23(5), 519. https://doi.org/10.3390/e23050519