Probability Representation of Quantum States
Abstract
:1. Introduction
2. Probability Representation of Quantum Oscillator States
3. General Scheme of Using Quantizer–Dequantizer Formalism
4. Associative Product of the Operator Symbols
5. Free Particle Coherent States in the Probability Representation of Quantum Mechanics
6. Evolution of the Symplectic Tomogram
7. Qubit States in Probability Representation of Quantum Mechanics
8. Qudit State Probability Representation
9. Quantum Evolution of Open System in Probability Representation of Density Operator
10. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schrödinger, E. Quantisierung als Eigenwertproblem (Erste Mitteilung). Ann. Phys. 1926, 384, 361–376. [Google Scholar] [CrossRef]
- Landau, L. Das Dämpfungsproblem in der Wellenmechanik. Z. Phys. 1927, 45, 430–441. [Google Scholar] [CrossRef]
- Von Neumann, J. Wahrscheinlichkeitstheoretischer Aufbau der Quantenmechanik. Gött. Nach. 1927, 1, 245–272. [Google Scholar]
- Dirac, P.A.M. The Principles of Quantum Mechanics; Clarendon Press: Oxford, UK, 1981; ISBN 9780198520115. [Google Scholar]
- Wootters, W.K. Quantum Mechanics without Probability Amplitudes. Found. Phys. 1986, 16, 391–405. [Google Scholar] [CrossRef]
- Wigner, E. On the Quantum Correction For Thermodynamic Equilibrium. Phys. Rev. 1932, 40, 749–759. [Google Scholar] [CrossRef]
- Husimi, K. Some Formal Properties of the Density Matrix. Proc. Phys. Math. Soc. Jpn. 1940, 22, 264–314. [Google Scholar]
- Glauber, R.J. Coherent and Incoherent States of the Radiation Field. Phys. Rev. 1963, 131, 2766–2788. [Google Scholar] [CrossRef]
- Sudarshan, E.C.G. Equivalence of Semiclassical and Quantum Mechanical Descriptions of Statistical Light Beams. Phys. Rev. Lett. 1963, 10, 277–279. [Google Scholar] [CrossRef]
- Stratonovich, R.L. On Distributions in Representation Space. J. Exp. Theor. Phys. 1957, 4, 891–898. Available online: http://www.jetp.ac.ru/cgi-bin/e/index/e/4/6/p891?a=list (accessed on 28 April 2021).
- Smithey, D.T.; Beck, M.; Raymer, M.G.; Faridani, A. Measurement of the Wigner Distribution and the Density Matrix of a Light Mode Using Optical Homodyne Tomography: Application to Squeezed States and the Vacuum. Phys. Rev. Lett. 1993, 70, 1244–1247. [Google Scholar] [CrossRef]
- Mancini, S.; Man’ko, V.I.; Tombesi, P. Symplectic Tomography as Classical Approach to Quantum Systems. Phys. Lett. A 1996, 213, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Dodonov, V.V.; Man’ko, V.I. Positive Distribution Description for Spin States. Phys. Lett. A 1997, 229, 335–339. [Google Scholar] [CrossRef]
- Man’ko, V.I.; Man’ko, O.V. Spin State Tomography. J. Exp. Theor. Phys. 1997, 85, 430–434. [Google Scholar] [CrossRef]
- Terra-Cunha, M.O.; Man’ko, V.I.; Scully, M.O. Quasiprobability and Probability Distributions for Spin-1/2 States. Found. Phys. Lett. 2001, 14, 103–117. [Google Scholar] [CrossRef]
- Schrödinger, E. Der Stetige Übergang von der Mikro- zur Makromechanik. Naturwissenschaften 1926, 14, 664–666. [Google Scholar] [CrossRef]
- Dodonov, V.V.; Man’ko, V.I. Invariants and Evolution of Nonstationary Quantum Systems. In Proceedings of the Lebedev Physical Institute Academy of Sciences of the USSR; Markov, M.A., Ed.; Nova Science Publ.: New York, NY, USA, 1989; Volume 183, ISBN 0-941743-49-7. [Google Scholar]
- Bertrand, J.; Bertrand, P.A. Tomographic Approach to Wigner’s Function. Found. Phys. 1989, 17, 397–405. [Google Scholar] [CrossRef]
- Vogel, K.; Risken, H. Determination of Quasiprobability Distributions in Terms of Probability Distributions for the Rotated Quadrature Phase. Phys. Rev. A 1989, 40, 2847–2849. [Google Scholar] [CrossRef] [PubMed]
- D’Ariano, G.M.; Maccone, L.; Paini, M. Spin Tomography. J. Opt. B Quantum Semiclass. Opt. 2003, 5, 77–84. [Google Scholar] [CrossRef]
- Man’ko, V.I.; Marmo, G.; Ventriglia, F.; Vitale, P. Metric on the Space of Quantum States from Relative Entropy. Tomographic Reconstruction. J. Phys. A Math. Theor. 2017, 50, 335302. [Google Scholar] [CrossRef] [Green Version]
- Born, M. Zur Quantenmechanik der Stossvorgänge. Zeitschrift für Physik 1926, 37, 863–867. [Google Scholar] [CrossRef]
- Gleason, A.M. Measures on the Closed Subspaces of a Hilbert Space. Indiana Univ. Math. J. 1957, 6, 885–893. [Google Scholar] [CrossRef]
- Man’ko, O.V.; Man’ko, V.I.; Marmo, G. Alternative Commutation Relations, Star Products and Tomography. J. Phys. A Math. Gen. 2002, 35, 699–719. [Google Scholar] [CrossRef]
- Man’ko, O.V.; Man’ko, V.I.; Marmo, G.; Vitale, P. Star Products, Duality and Double Lie Algebras. Phys. Lett. A 2007, 360, 522–532. [Google Scholar] [CrossRef] [Green Version]
- Asorey, M.; Ibort, A.; Marmo, G.; Ventriglia, F. Quantum Tomography Twenty Years Later. Phys. Scr. 2015, 90, 074031. [Google Scholar] [CrossRef] [Green Version]
- Adam, P.; Andreev, V.A.; Man’ko, M.A.; Man’ko, V.I.; Mechler, M. Properties of Quantizer and Dequantizer Operators for Qudit States and Parametric Down-Conversion. Symmetry 2021, 13, 131. [Google Scholar] [CrossRef]
- Adam, P.; Andreev, V.A.; Man’ko, M.A.; Man’ko, V.I.; Mechler, M. SU(2) Symmetry of Qubit States and Heisenberg–Weyl Symmetry of Systems with Continuous Variables in the Probability Representation of Quantum Mechanics. Symmetry 2020, 12, 1099. [Google Scholar] [CrossRef]
- Ciaglia, F.M.; Di Cosmo, F.; Ibort, A.; Marmo, G. Dynamical Aspects in the Quantizer-Dequantizer Formalism. Ann. Phys. 2017, 385, 769–781. [Google Scholar] [CrossRef] [Green Version]
- Przhiyalkovskiy, Y.V. Continuous Measurements in Probability Representation of Quantum Mechanics. arXiv 2021, arXiv:2101.07568v1. [Google Scholar]
- Feynman, R.P. Space-Time Approach to Non-Relativistic Quantum Mechanics. Rev. Mod. Phys. 1948, 20, 367–387. [Google Scholar] [CrossRef] [Green Version]
- Claeys, P.W.; Polkovnikov, A. Quantum Eigenstates from Classical Gibbs Distributions. SciPost Phys. 2021, 10, 014. [Google Scholar] [CrossRef]
- Khrennikov, A. Born’s formula from statistical mechanics of classical fields and theory of hitting times. Phys. A Stat. Mech. Appl. 2014, 393, 207–221. [Google Scholar] [CrossRef] [Green Version]
- Khrennikov, A. Quantum Postulate vs. Quantum Nonlocality: On the Role of the Planck Constant in Bell’s Argument. Found. Phys. 2021, 51, 16. [Google Scholar] [CrossRef]
- Khrennikov, A.; Alodjants, A. Classical (Local and Contextual) Probability Model for Bohm-Bell Type Experiments: No-Signaling as Independence of Random Variables. Entropy 2019, 21, 157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khrennikov, A. (Ed.) Social Laser; Jenny Stanford Publ.: Singapore, 2020; p. 280. ISBN 978-981-4800-83-9. [Google Scholar]
- Yang, C.-D.; Han, S.-Y. Extending Quantum Probability from Real Axis to Complex Plane. Entropy 2021, 23, 210. [Google Scholar] [CrossRef] [PubMed]
- Koopman, B.O. Hamiltonian Systems and Transformation in Hilbert Space. Proc. Natl. Acad. Sci. USA 1931, 17, 315–318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Man’ko, O.V.; Man’ko, V.I. Quantum States in Probability Representation and Tomography. J. Russ. Laser Res. 1997, 18, 407–444. [Google Scholar] [CrossRef]
- Man’ko, V.I.; Marmo, G.; Simoni, A.; Stern, A.; Ventriglia, F. Tomograms in the Quantum–Classical Transition. Phys. Lett. A 2005, 343, 251–266. [Google Scholar] [CrossRef] [Green Version]
- Stornaiolo, C. Tomographic Represention of Quantum and Classical Cosmology. In Accelerated Cosmic Expansion, Proceedings of the Fourth International Meeting on Gravitation and Cosmology; Moreno Gonzalez, C., Madriz Aguilar, J., Reyes Barrera, L., Eds.; Astrophysics and Space Science Proceedings; Springer: Cham, Switzerland, 2014; Volume 38, pp. 211–219. Available online: https://link.springer.com/book/10.1007%2F978-3-319-02063-1 (accessed on 8 May 2012).
- Facchi, P.; Ligabó, M. Classical and Quantum Aspects of Tomography. In Proceedings of the AIP Conference Proceedings, Chonburi, Thailand, 18–20 July 2010. [Google Scholar]
- Elze, H.-T.; Gambarotta, G.; Vallone, F. General Linear Dynamics–Quantum, Classical or Hybrid. J. Phys. Conf. Ser. 2011, 306, 012010. [Google Scholar] [CrossRef] [Green Version]
- De Gosson, M.A. Quantum Harmonic Analysis of the Density Matrix. Quanta 2018, 7, 74–110. [Google Scholar] [CrossRef] [Green Version]
- Kuznetsov, S.V.; Man’ko, O.V.; Tcherniega, N.V. Photon Distribution Function, Tomograms and Entanglement in Stimulated Raman Scattering. J. Opt. B Quantum Semiclass. Opt. 2003, 5, S5503. [Google Scholar] [CrossRef]
- Foukzon, J.; Potapov, A.A.; Menkova, E.; Podosenov, S.A. A New Quantum-Mechanical Formalism Based on the Probability Representation of Quantum States. viXra 2016. viXra:1612.0298. [Google Scholar]
- Chernega, V.N.; Belolipetskiy, S.N.; Man’ko, O.V.; Man’ko, V.I. Probability Representation of Quantum Mechanics and Star-Product Quantization. J. Phys. Conf. Ser. 2019, 1348, 012101. [Google Scholar] [CrossRef]
- Chernega, V.N.; Man’ko, O.V.; Man’ko, V.I. God Plays Coins or Superposition Principle for Classical Probabilities in Quantum Suprematism Representation of Qubit States. J. Russ. Laser Res. 2018, 39, 128–139. [Google Scholar] [CrossRef] [Green Version]
- Gorini, V.; Kossakowski, A.; Sudarshan, E.C.G. Completely Positive Dynamical Semigroups of N–Level Systems. J. Math. Phys. 1976, 17, 821–825. [Google Scholar] [CrossRef]
- Lindblad, G. On the Generators of Quantum Dynamical Semigroups. Math. Phys. 1976, 48, 119–130. [Google Scholar] [CrossRef]
- Chruscinski, D.; Pascazio, S. A Brief History of the GKLS Equation. arXiv 2017, arXiv:1710.05993. [Google Scholar]
- Nosal’, I.A.; Teretenkov, A.E. Exact Dynamics of Moments and Correlation Functions for GKSL Fermionic Equations of Poisson Type. Math. Notes 2020, 108, 911–915. [Google Scholar] [CrossRef]
- Teretenkov, A.E. Irreversible Quantum Evolution with q Quadratic Generator: Review. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 2019, 22, 1930001. [Google Scholar] [CrossRef] [Green Version]
- Mancini, S.; Man’ko, O.V.; Man’ko, V.I.; Tombesi, P. The Pauli equation for Probability Distributions. J. Phys. A Math. Gen. 2001, 34, 3461. [Google Scholar] [CrossRef] [Green Version]
- Korennoy, Y.A. Gauge-independent Husimi Functions of Charged Quantum Particles in the Electro-magnetic Field. arXiv 2018, arXiv:1806.06443. [Google Scholar]
- Kiktenko, E.; Fedorov, A. Tomographic Causal Analysis of Two-Qubit States and Tomographic Discord. Phys. Lett. A 2014, 378, 1704–1710. [Google Scholar] [CrossRef] [Green Version]
- Miroshnichenko, G.P. CQED Quantum Tomography of a Microwave Range. arXiv 2015, arXiv:1510.03155. [Google Scholar]
- Koczor, B.; Zeier, R.; Glaser, S.J. Continuous Phase-Space Representations for Finite-Dimensional Quantum States and their Tomography. arXiv 2018, arXiv:1711.07994v3. [Google Scholar] [CrossRef] [Green Version]
- Toninelli, E.; Ndagano, B.; Valles, A.; Forbes, A. Concepts in Quantum State Tomography and Classical Implementation with Intense Light: A Tutorial. Adv. Opt. Photonics 2019, 11, 67–134. [Google Scholar] [CrossRef] [Green Version]
- Almarashi, A.M.; Abd-Elmougod, G.A.; Raqab, M.Z. Quantum Extropy and Statistical Properties of the Radiation Field for Photonic Binomial and Even Binomial Distributions. J. Russ. Laser Res. 2020, 41, 334–343. [Google Scholar] [CrossRef]
- Leon, R.C.C.; Yang, C.H.; Hwang, J.C.C.; Lemyre, J.C.; Tanttu, T.; Huang, W.; Huang, J.H.; Hudson, F.E.; Itoh, K.M.; Laucht, A.; et al. Bell-state Tomography in a Silicon Many-electron Artificial Molecule. arXiv 2020, arXiv:2008.03968v1. [Google Scholar]
- Bazrafkan, M.R.; Nahvifard, E. Stationary perturbation theory in the probability representation of quantum mechanics. J. Russ. Laser Res. 2009, 30, 392–403. [Google Scholar] [CrossRef]
- Filinov, V.S.; Schubert, G.; Levashov, P.; Bonitz, M.; Fehske, H.; Fortov, V.E.; Filinov, A.V. Center-of-mass Tomographic Approach to Quantum Dynamics. Phys. Lett. A 2008, 372, 5064–5070. [Google Scholar] [CrossRef]
- Landau, L.D.; Lifshitz, E.M. Quantum Mechanics: Non-Relativistic Theory, 3rd ed.; Elsevier: London, UK, 1981; p. 689. ISBN 9780750635394. [Google Scholar]
- Nielsen, M.A.; Chuang, I.L. Quantum Computation and Quantum Information, 10th Anniversary ed.; University Press: Cambridge, UK, 2010; p. 704. ISBN 978-1-107-00217-3. [Google Scholar]
- Man’ko, V.I.; Mendes, R.V. Non-Commutative Time-Frequency Tomography. Phys. Lett. A 1999, 263, 53–61. [Google Scholar] [CrossRef] [Green Version]
- Radon, J. Uber die Bestimmung von Funktionen durch ihre Integralwerte Langs Gewisser Mannigfaltigkeiten. Ber. Verh. Sächs. Akad. Wiss. Leipzig 1917, 69, 262–277. [Google Scholar]
- Heisenberg, W. Über den Anschaulichen Inhalt der Quantentheoretischen Kinematik und Mechanik. Ztschr. Phys 1927, 43, 172–198. [Google Scholar] [CrossRef]
- Schleich, W. Quantum Optics in Phase Space; Wiley-VCH: Hoboken, NJ, USA, 2001; ISBN-13: 978-3527294350. [Google Scholar] [CrossRef]
- Grönewold, H. On the Principles of Elementary Quantum Mechanics. Physica 1946, 12, 405–460. [Google Scholar] [CrossRef]
- Ibort, A.; Man’ko, V.I.; Marmo, G.; Simoni, A.; Stornaiolo, C.; Ventriglia, F. Realization of Associative Products in Terms of Moyal and Tomographic Symbols. Phys. Scr. 2013, 87, 038107. [Google Scholar] [CrossRef]
- Lizzi, F.; Vitale, P. Matrix Bases for Star-Products: A Review. SIGMA 2014, 10, 86. [Google Scholar] [CrossRef] [Green Version]
- Adam, P.; Andreev, V.A.; Man’ko, M.A.; Man’ko, V.I. Nonnegative Discrete Symbols and their Probabilistic Interpretation. J. Russ. Laser Res. 2017, 38, 491–506. [Google Scholar] [CrossRef]
- Man’ko, M.A.; Man’ko, V.I.; Marmo, G.; Ventriglia, F.; Vitale, P. Dichotomic Probability Representation of Quantum States. arXiv 2019, arXiv:1905.10561. [Google Scholar]
- Figueroa, A.; Lopez-Saldivar, J.A.; Castanos, O.; Lopez-Pena, R. Extremal Density Matrices for Qudit States. arXiv 2016, arXiv:1609.09835. [Google Scholar]
- Filippov, S.N.; Man’ko, V.I. Inverse Spin-s Portrait and Representation of Qudit States by Single Probability Vectors. J. Rus. Laser Res. 2010, 31, 32–54. [Google Scholar] [CrossRef] [Green Version]
- Mandal, K.; Verma, A. Higher-Order Nonclassicality in Photon Added and Subtracted Qudit States. Ann. Phys. (Berlin) 2020, 532, 2000286. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Man’ko, O.V.; Man’ko, V.I. Probability Representation of Quantum States. Entropy 2021, 23, 549. https://doi.org/10.3390/e23050549
Man’ko OV, Man’ko VI. Probability Representation of Quantum States. Entropy. 2021; 23(5):549. https://doi.org/10.3390/e23050549
Chicago/Turabian StyleMan’ko, Olga V., and Vladimir I. Man’ko. 2021. "Probability Representation of Quantum States" Entropy 23, no. 5: 549. https://doi.org/10.3390/e23050549
APA StyleMan’ko, O. V., & Man’ko, V. I. (2021). Probability Representation of Quantum States. Entropy, 23(5), 549. https://doi.org/10.3390/e23050549