Upper Bounds for the Capacity for Severely Fading MIMO Channels under a Scale Mixture Assumption
Abstract
:1. Introduction
1.1. MIMO Channels and Capacity
1.2. Scale Mixture of (Complex) Matrix Variate Normals and the Resulting Wishart
1.3. Main Contribution of this Paper
2. Eigenvalue Pdfs and an Upper Bound
3. Capacity for the Case
3.1. Approximation for Case 1 and Case 2
3.2. Exact Expression for Case 2
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
MIMO | multiple-input-multiple-output |
LOS | line-of-sight |
CN | complex matrix variate normal |
SMCN | scale mixture of complex matrix variate normal |
SMCW | scale mixture of complex Wishart |
probability density function |
Appendix A
References
- Choi, S.H. Severly Fading MIMO Channels. Unpublished. Master’s Thesis, University of Canterbury, Christchurch, New Zealand, 2007. [Google Scholar]
- Ratnarajah, T.; Vaillancourt, R.; Alvo, M. Complex random matrices and Rician channel capacity. Probl. Inf. Transm. 2005, 41, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Selim, B.; Alhussein, O.; Muhaidat, S.; Karagiannidis, G.K.; Liang, J. Modeling and analysis of wireless channels via the mixture of Gaussian distribution. IEEE Trans. Veh. Technol. 2015, 65, 8309–8321. [Google Scholar] [CrossRef] [Green Version]
- Alhussein, O.; Selim, B.; Assaf, T.; Muhaidat, S.; Liang, J.; Karagiannidis, G.K. A generalized mixture of Gaussians for fading channels. In Proceedings of the 2015 IEEE 81st Vehicular Technology Conference (VTC Spring), Piscataway, NJ, USA, 1–14 May 2015; pp. 1–6. [Google Scholar]
- Chu, K.C. Estimation and decision for linear systems with elliptical random processes. IEEE Trans. Autom. Control. 1973, 18, 499–505. [Google Scholar]
- Andrews, D.F.; Mallows, C.L. Scale mixtures of normal distributions. J. R. Stat. Soc. Ser. (Methodol.) 1974, 36, 99–102. [Google Scholar] [CrossRef]
- West, M. On scale mixtures of normal distributions. Biometrika 1987, 74, 646–648. [Google Scholar] [CrossRef]
- Provost, S.B.; Cheong, Y.H. The distribution of Hermitian quadratic forms in elliptically contoured random vectors. J. Stat. Plan. Inference 2002, 102, 303–316. [Google Scholar] [CrossRef]
- Choi, S.H.; Smith, P.; Allen, B.; Malik, W.Q.; Shafi, M. Severely fading MIMO channels: Models and mutual information. In Proceedings of the 2007 IEEE International Conference on Communications, Glasgow, Scotland, 24–28 June 2007; pp. 4628–4633. [Google Scholar]
- Ferreira, J.T.; Bekker, A. A unified complex noncentral Wishart type distribution inspired by massive MIMO systems. J. Stat. Distrib. Appl. 2019, 6, 1–19. [Google Scholar] [CrossRef]
- Ferreira, J.T.; Bekker, A.; Arashi, M. Advances in Wishart-type modelling of channel capacity. Revstat-Stat. J. 2020, 18, 237–256. [Google Scholar]
- Ferreira, J.T.; Bekker, A. Weighted condition number distributions emanating from complex noncentral Wishart type matrices. In Computational and Methodological Statistics and Biostatistics; Springer: Berlin/Heidelberg, Germany, 2020; pp. 99–119. [Google Scholar]
- Ollila, E.; Eriksson, J.; Koivunen, V. Complex elliptically symmetric random variables—generation, characterization, and circularity tests. IEEE Trans. Signal Process. 2010, 59, 58–69. [Google Scholar] [CrossRef]
- Kang, M.; Alouini, M.S. Capacity of MIMO Rician channels. IEEE Trans. Wirel. Commun. 2006, 5, 112–122. [Google Scholar] [CrossRef]
- McKay, M.R.; Collings, I.B. General capacity bounds for spatially correlated Rician MIMO channels. IEEE Trans. Inf. Theory 2005, 51, 3121–3145. [Google Scholar] [CrossRef]
- Khatri, C. Non-central distributions of ith largest characteristic roots of three matrices concerning complex multivariate normal populations. Ann. Inst. Stat. Math. 1969, 21, 23–32. [Google Scholar] [CrossRef]
- Matthaiou, M.; Laurenson, D.I.; Wang, C.X. On analytical derivations of the condition number distributions of dual non-central Wishart matrices. IEEE Trans. Wirel. Commun. 2009, 8, 1212–1217. [Google Scholar] [CrossRef] [Green Version]
- James, A.T. Distributions of matrix variates and latent roots derived from normal samples. Ann. Math. Stat. 1964, 35, 475–501. [Google Scholar] [CrossRef]
- Bain, L.J.; Engelhardt, M. Introduction to Probability and Mathematical Statistics; Brooks/Cole: Pacific Grove, CA, USA, 1987. [Google Scholar]
- Gradshteyn, I.S.; Ryzhik, I.M. Table of Integrals, Series, and Products; Academic Press: Cambridge, MA, USA, 2014. [Google Scholar]
- Gross, K.I.; Richards, D.S.P. Total positivity, spherical series, and hypergeometric functions of matrix argument. J. Approx. Theory 1989, 59, 224–246. [Google Scholar] [CrossRef] [Green Version]
- Patnaik, P. The non-central χ2-and F-distribution and their applications. Biometrika 1949, 36, 202–232. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, J.T.; Bekker, A.; Arashi, M. Bivariate noncentral distributions: An approach via the compounding method. S. Afr. Stat. J. 2016, 50, 103–122. [Google Scholar]
- Bekker, A.; Ferreira, J.T. Bivariate gamma type distributions for modeling wireless performance metrics. Stat. Optim. Inf. Comput. 2018, 6, 335–353. [Google Scholar] [CrossRef]
- Saeedzarandi, M.; Nezamabadi-pour, H.; Jamalizadeh, A. Dual-Tree complex wavelet coefficient magnitude modeling using scale mixtures of Rayleigh distribution for image denoising. Circuits Syst. Signal Process. 2020, 39, 2968–2993. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferreira, J.T. Upper Bounds for the Capacity for Severely Fading MIMO Channels under a Scale Mixture Assumption. Entropy 2021, 23, 845. https://doi.org/10.3390/e23070845
Ferreira JT. Upper Bounds for the Capacity for Severely Fading MIMO Channels under a Scale Mixture Assumption. Entropy. 2021; 23(7):845. https://doi.org/10.3390/e23070845
Chicago/Turabian StyleFerreira, Johannes T. 2021. "Upper Bounds for the Capacity for Severely Fading MIMO Channels under a Scale Mixture Assumption" Entropy 23, no. 7: 845. https://doi.org/10.3390/e23070845
APA StyleFerreira, J. T. (2021). Upper Bounds for the Capacity for Severely Fading MIMO Channels under a Scale Mixture Assumption. Entropy, 23(7), 845. https://doi.org/10.3390/e23070845