Robust Vehicle Speed Measurement Based on Feature Information Fusion for Vehicle Multi-Characteristic Detection
Abstract
:1. Introduction
2. Related Works
2.1. Object Detection Algorithm
2.2. Attention Mechanism
2.3. Cross-Entropy Loss
3. The Proposed Method
3.1. Vehicle Multi-Characteristic Detection Based on YOLOv4
3.2. Vehicle Multi-Characteristic Detection Based on ECA-YOLOv4
3.3. Optimal Design of Binocular Stereovision-Based Vehicle Speed Measurement System with Vehicle Multi-Characteristic Detection
Algorithm 1 Vehicle Speed Measurement Algorithm |
Input: Binocular Stereovision Video Sequence Output: Vehicle Speed 1: function Vehicle speed measurement 2: if License plate detected then 3: if Logo detected then 4: v = 5: else Logo undetected 6: v = 7: end if 8: else License plate undetected 9: if Logo detected then 10: v= 11: else Logo undetected 12: v = 13: end if 14: end if 15: return v 16: end function |
4. Experiments
4.1. Vehicle Speed Measurement Experiments with License Plate Detected
4.2. Vehicle Speed Measurement Experiments with License Plate Undetected
4.3. Contrast Experiments
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pramanik, A.; Sarkar, S.; Maiti, J. A real-time video surveillance system for traffic pre-events detection. Accid. Anal. Prev. 2021, 154, 106019. [Google Scholar] [CrossRef]
- Wang, Z.; Huang, J.; Xiong, N.N.; Zhou, X.; Lin, X.; Ward, T.L. A Robust Vehicle Detection Scheme for Intelligent Traffic Surveillance Systems in Smart Cities. IEEE Access 2020, 8, 139299–139312. [Google Scholar] [CrossRef]
- Phan, H.N.; Pham, L.H.; Chung, N.M.; Ha, S.V.U. Improved Shadow Removal Algorithm for Vehicle Classification in Traffic Surveillance System. In Proceedings of the 2020 RIVF International Conference on Computing and Communication Technologies (RIVF), Ho Chi Minh City, Vietnam, 14–15 October 2020; pp. 647–655. [Google Scholar]
- Tang, Y.; Zhang, C.; Gu, R.; Li, P.; Yang, B. Vehicle detection and recognition for intelligent traffic surveillance system. Multimed. Tools Appl. 2017, 76, 5817–5832. [Google Scholar] [CrossRef]
- Jiang, H.; Polak, J.W.; Barria, J.; Krishnan, R. On the estimation of space-mean-speed from inductive loop detector data. Transp. Plan. Technol. 2010, 33, 91–104. [Google Scholar]
- Jeng, S.L.; Chieng, W.H.; Lu, H.P. Estimating Speed Using a Side-Looking Single-Radar Vehicle Detector. IEEE Trans. Intell. Transp. Syst. 2014, 15, 607–614. [Google Scholar] [CrossRef]
- Mao, X.; Hou, J. Object-based forest gaps classification using airborne LiDAR data. J. For. Res. 2018, 30, 617–627. [Google Scholar] [CrossRef]
- Luvizon, D.C.; Nassu, B.T.; Minetto, R. A Video-Based System for Vehicle Speed Measurement in Urban Roadways. IEEE Trans. Intell. Transp. Syst. 2017, 18, 1393–1404. [Google Scholar] [CrossRef]
- Llorca, D.F.; Martínez, A.H.; Daza, I.G. Vision-based Vehicle Speed Estimation for ITS: A Survey. arXiv 2021, arXiv:2101.06159. [Google Scholar]
- Vakili, E.; Shoaran, M.; Sarmadi, M.R. Single–camera vehicle speed measurement using the geometry of the imaging system. Multimed. Tools Appl. 2020, 79, 19307–19327. [Google Scholar] [CrossRef]
- Sonth, A.; Settibhaktini, H.; Jahagirdar, A. Vehicle speed determination and license plate localization from monocular video streams. In Proceedings of 3rd International Conference on Computer Vision and Image Processing; Springer: Singapore, 2020; pp. 267–277. [Google Scholar]
- Jalalat, M.; Nejati, M.; Majidi, A. Vehicle detection and speed estimation using cascade classifier and sub-pixel stereo matching. In Proceedings of the 2016 2nd International Conference of Signal Processing and Intelligent Systems (ICSPIS), Tehran, Iran, 14–15 December 2016; pp. 1–5. [Google Scholar]
- Zhu, J.; Yuan, L.; Zheng, Y.F.; Ewing, R.L. Stereo Visual Tracking Within Structured Environments for Measuring Vehicle Speed. IEEE Trans. Circuits Syst. Video Technol. 2012, 22, 1471–1484. [Google Scholar] [CrossRef] [Green Version]
- Yang, L.; Li, M.; Song, X.; Xiong, Z.; Hou, C.; Qu, B. Vehicle Speed Measurement Based on Binocular Stereovision System. IEEE Access 2019, 7, 106628–106641. [Google Scholar] [CrossRef]
- Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.E.; Fu, C.Y.; Berg, A.C. SSD: Single Shot MultiBox Detector. In 14th European Conference on Computer Vision, ECCV 2016; Springer: Cham, Switzerland, 2016; pp. 21–37. [Google Scholar]
- Jiang, X.; Ma, J.; Xiao, G.; Shao, Z.; Guo, X. A review of multimodal image matching: Methods and applications. Inf. Fusion 2021, 73, 22–71. [Google Scholar] [CrossRef]
- Ma, J.; Jiang, X.; Fan, A.; Jiang, J.; Yan, J. Image Matching from Handcrafted to Deep Features: A Survey. Int. J. Comput. Vis. 2021, 129, 23–79. [Google Scholar] [CrossRef]
- Tan, Y.; Zhang, Y. Beijing: Forging “Sharp Swords” to Severely Punish license plate violation. Road Traffic Manag. 2019, 4, 44–45. [Google Scholar]
- Beijing, Tianjin and Hebei jointly investigated and dealt with illegal acts of false license plates for motor vehicles. Auto Saf. 2018, 1, 27.
- Police in Quanzhou, Fujian Province, Have Dealt with 8328 Cases of Drunk Driving and Four of Drag Racing This Year. Available online: http://www.rmjtxw.com/news/rxw/59216.html (accessed on 16 July 2021).
- Big Data Power Public Security Traffic Police, Set of Cars No Place to Hide. Available online: http://www.rmjtxw.com/news/dsj/36721.html (accessed on 16 July 2021).
- Three Months to Investigate and Deal with Fake Card Set more than 3500 Illegal Cases. Available online: https://www.chinacourt.org/article/detail/2017/06/id/2897523.shtml (accessed on 16 July 2021).
- Zheng, Z.; Zhen, S.; Yu, G.; Jie, Y. Object Detection in 20 Years: A Survey. arXiv 2019, arXiv:1905.05055. [Google Scholar]
- Zong, W.; Shi, P.; Feng, C.; Guo, L.; Cheng, Z.; Philip, S.Y. A Comprehensive Survey on Graph Neural Networks. IEEE Trans. Neural Netw. 2021, 32, 4–24. [Google Scholar]
- Jie, Z.; Gan, C.; Zheng, Z.; Cheng, Y.; Zhi, L.; Li, W.; Chang, L.; Mao, S. Graph neural networks: A review of methods and applications. AI Open 2020, 1, 57–81. [Google Scholar]
- Yang, J.; Guo, J.; Yue, H.; Liu, Z.; Hu, H.; Li, K. CDnet: CNN-Based Cloud Detection for Remote Sensing Imagery. IEEE Trans. Geosci. Remote Sens. 2019, 57, 6195–6211. [Google Scholar] [CrossRef]
- Hong, D.; Gao, L.; Yao, J.; Zhang, B.; Plazas, A.; Chanussot, J. Graph Convolutional Networks for Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2021, 59, 5966–5978. [Google Scholar] [CrossRef]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet classification with deep convolutional neural networks. Commun. ACM 2017, 60, 84–90. [Google Scholar] [CrossRef]
- Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. In Proceedings of the ICLR 2015: International Conference on Learning Representations 2015, San Diego, CA, USA, 7–9 May 2015. [Google Scholar]
- Lin, M.; Chen, Q.; Yan, S. Network In Network. In Proceedings of the ICLR 2014: International Conference on Learning Representations (ICLR) 2014, Banff, AB, Canada, 14–16 April 2014. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Iandola, F.; Moskewicz, M.; Karayev, S.; Girshick, R.; Keutzer, K. DenseNet: Implementing Efficient ConvNet Descriptor Pyramids. arXiv 2014, arXiv:1404.1869. [Google Scholar]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788. [Google Scholar]
- Bochkovskiy, A.; Wang, C.Y.; Liao, H.Y.M. Yolov4: Optimal speed and accuracy of object detection. arXiv 2020, arXiv:2004.10934. [Google Scholar]
- Lin, T.Y.; Dollár, P.; Girshick, R.; He, K.; Hariharan, B.; Belongie, S. Feature pyramid networks for object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2117–2125. [Google Scholar]
- Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation. In Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014; pp. 580–587. [Google Scholar]
- Girshick, R. Fast R-CNN. In Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 7–13 December 2015; pp. 1440–1448. [Google Scholar]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 1137–1149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, S.; Huang, D.; Wang, Y. Receptive Field Block Net for Accurate and Fast Object Detection. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 404–419. [Google Scholar]
- Redmon, J.; Farhadi, A. YOLO9000: Better, Faster, Stronger. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 6517–6525. [Google Scholar]
- Dan, H.; Lian, G.; Naoto, Y.; Jing, Y.; Jocelyn, C.; Qian, D.; Bing, Z. More Diverse Means Better: Multimodal Deep Learning Meets Remote-Sensing Imagery Classification. IEEE Trans. Geosci. Remote Sens. 2021, 59, 4340–4354. [Google Scholar]
- Zhu, X.; Xu, X.; Mu, N. Saliency Detection Based on the Combination of High-Level Knowledge and Low-Level Cues in Foggy Images. Entropy 2019, 21, 374. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gu, Y.; Wang, X.; Zhang, C.; Li, B. Advanced Driving Assistance Based on the Fusion of Infrared and Visible Images. Entropy 2021, 23, 239. [Google Scholar] [CrossRef]
- Redmon, J.; Farhadi, A. YOLOv3: An Incremental Improvement. arXiv 2018, arXiv:1804.02767. [Google Scholar]
- Zhao, Q.; Sheng, T.; Wang, Y.; Tang, Z.; Ling, H. M2Det: A Single-Shot Object Detector Based on Multi-Level Feature Pyramid Network. Proc. AAAI Conf. Artif. Intell. 2019, 33, 9259–9266. [Google Scholar] [CrossRef]
- Lin, T.Y.; Goyal, P.; Girshick, R.; He, K.; Dollár, P. Focal Loss for Dense Object Detection. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 1, 2999–3007. [Google Scholar]
- Tan, M.; Pang, R.; Le, Q.V. Efficientdet: Scalable and efficient object detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 10781–10790. [Google Scholar]
- Li, X.; Wang, W.; Hu, X.; Yang, J. Selective Kernel Networks. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019; pp. 510–519. [Google Scholar]
- Pan, Z.; Yu, W.; Lei, J.; Ling, N.; Kwong, S. TSAN: Synthesized View Quality Enhancement via Two-Stream Attention Network for 3D-HEVC. IEEE Trans. Circuits Syst. Video Technol. 2021, 1–14. [Google Scholar] [CrossRef]
- Gupta, A.K.; Seal, A.; Prasad, M.; Khanna, P. Salient Object Detection Techniques in Computer Vision-A Survey. Entropy 2020, 22, 1174. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Shen, L.; Albanie, S.; Sun, G.; Wu, E. Squeeze-and-Excitation Networks. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 42, 2011–2023. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Q.; Wu, B.; Zhu, P.; Li, P.; Hu, Q. ECA-Net: Efficient Channel Attention for Deep Convolutional Neural Networks. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020. [Google Scholar]
- Woo, S.; Park, J.; Lee, J.Y.; Kweon, I.S. CBAM: Convolutional Block Attention Module. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 3–19. [Google Scholar]
- Zhang, Z.; Sabuncu, M.R. Generalized cross entropy loss for training deep neural networks with noisy labels. In Proceedings of the 32nd International Conference on Neural Information Processing Systems, NIPS’18, Montreal, QC, Canada, 3–8 December 2018; Volume 31, pp. 8792–8802. [Google Scholar]
- Guangdong Key Laboratory of Intelligent Transportation System. OpenIts Research Project. Available online: http://www.openits.cn/ (accessed on 16 July 2021).
- Dong, Z.; Wu, Y.; Pei, M.; Jia, Y. Vehicle Type Classification Using a Semisupervised Convolutional Neural Network. IEEE Trans. Intell. Transp. Syst. 2015, 16, 2247–2256. [Google Scholar] [CrossRef]
- Xu, Z.; Yang, W.; Meng, A.; Lu, N.; Huang, H.; Ying, C.; Huang, L. Towards End-to-End License Plate Detection and Recognition: A Large Dataset and Baseline. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 261–277. [Google Scholar]
- Xie, W.; Zhu, D.; Tong, X. A small object detection method based on visual attention. Comput. Eng. Appl. 2013, 49, 125–128. [Google Scholar]
- Zou, Y. Motor Vehicle Speed Detector. In China National Standard GB/T 21255-2007; State Administration for Market Regulation, Standardization Administration: Beijing, China, 2007. [Google Scholar]
- Tang, Z.; Wang, G.; Xiao, H.; Zheng, A.; Hwang, J.N. Single-Camera and Inter-Camera Vehicle Tracking and 3D Speed Estimation Based on Fusion of Visual and Semantic Features. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Salt Lake City, UT, USA, 18–22 June 2018; pp. 108–1087. [Google Scholar]
- El Bouziady, A.; Thami, R.O.H.; Ghogho, M.; Bourja, O.; El Fkihi, S. Vehicle speed estimation using extracted SURF features from stereo images. In Proceedings of the 2018 International Conference on Intelligent Systems and Computer Vision (ISCV), Fez, Morocco, 2–4 April 2018; pp. 1–6. [Google Scholar]
Algorithm | AP (%) | AP (%) | AP (%) | AP (%) | AP (%) | mAP (%) |
---|---|---|---|---|---|---|
Faster R-CNN | 87.75 | 45.82 | 53.91 | 79.32 | 68.84 | 67.13 |
SSD | 94.90 | 77.16 | 71.68 | 87.79 | 80.82 | 82.47 |
RFB | 94.62 | 56.93 | 60.21 | 82.67 | 80.08 | 74.90 |
Retinanet | 93.97 | 33.14 | 51.61 | 73.59 | 56.80 | 61.82 |
M2Det | 95.87 | 68.75 | 71.15 | 87.27 | 84.84 | 81.58 |
YOLOv3 | 93.91 | 88.06 | 81.94 | 90.89 | 86.99 | 88.35 |
YOLOv4 | 96.47 | 92.13 | 87.72 | 94.17 | 91.20 | 92.34 |
Algorithm | Input Size | Model Parameters Size | Model Compression Rate | FLOPs |
---|---|---|---|---|
YOLOv4 | 416 × 416 | 244.29 MB | / | 29.95 G |
CBAM-YOLOv4 | 416 × 416 | 180.51 MB | 26.10% | 19.28 G |
SE-YOLOv4 | 416 × 416 | 179.66 MB | 26.45% | 19.28 G |
ECA-YOLOv4 | 416 × 416 | 178.82 MB | 26.80% | 19.28 G |
Algorithm | AP (%) | AP (%) | AP (%) | AP (%) | AP (%) | mAP (%) | FPS |
---|---|---|---|---|---|---|---|
YOLOv4 | 96.47 | 92.13 | 87.72 | 94.17 | 91.20 | 92.34 | 22 |
ECA-YOLOv4 | 97.01 | 93.19 | 87.98 | 94.53 | 91.99 | 92.94 | 23 |
SE-YOLOv4 | 97.02 | 93.24 | 88.30 | 94.49 | 92.29 | 93.07 | 21 |
CBAM-YOLOv4 | 97.27 | 93.47 | 88.48 | 93.91 | 91.76 | 92.98 | 16 |
Number | Plate | Logo | Light | Mirror | Satellite Speed (km/h) | ||||
---|---|---|---|---|---|---|---|---|---|
Speed (km/h) | Error Rate (%) | Speed (km/h) | Error Rate (%) | Speed (km/h) | Error Rate (%) | Speed (km/h) | Error Rate (%) | ||
1 | 42.29 | −2.49 | 43.70 | 0.76 | 42.53 | −1.94 | 79.65 | 83.65 | 43.37 |
2 | 43.55 | 0.41 | 43.41 | 0.08 | 43.50 | 0.30 | 22.43 | −48.28 | 43.37 |
3 | 44.52 | 2.28 | 44.71 | 2.71 | 44.47 | 2.16 | 39.10 | −10.18 | 43.53 |
4 | 45.32 | 3.56 | 45.16 | 3.20 | 46.21 | 5.60 | 58.24 | 33.09 | 43.76 |
5 | 43.28 | −1.10 | 45.16 | 3.20 | 43.09 | −1.53 | 13.04 | −70.20 | 43.76 |
6 | 43.22 | −1.06 | 42.06 | −3.71 | 43.94 | 0.60 | 124.35 | 184.68 | 43.68 |
7 | 44.63 | 2.53 | 43.64 | 0.26 | 41.72 | −4.16 | 9.57 | −78.02 | 43.53 |
8 | 42.39 | −2.25 | 42.05 | −3.04 | 41.95 | −3.27 | 7.69 | −82.27 | 43.37 |
9 | 45.34 | 4.55 | 44.04 | 1.56 | 43.56 | 0.44 | 75.34 | 73.71 | 43.37 |
10 | 43.09 | 0.34 | 41.62 | −3.07 | 45.37 | 5.66 | 42.48 | −1.07 | 42.94 |
Error rate range | [−2.49%, 4.55%] | [−3.71%, 3.20%] | [−4.16%, 5.66%] | [−82.27%, 184.69%] |
Number | Plate | Logo | Light | Average | Satellite Speed (km/h) | ||||
---|---|---|---|---|---|---|---|---|---|
Speed (km/h) | Error Rate (%) | Speed (km/h) | Error Rate (%) | Speed (km/h) | Error Rate (%) | Speed (km/h) | Error Rate (%) | ||
1 | 44.81 | −2.48 | 45.30 | −1.41 | 44.64 | −2.85 | 44.92 | −2.25 | 45.95 |
2 | 45.79 | −0.74 | 46.50 | 0.80 | 46.57 | 0.95 | 46.29 | 0.34 | 46.13 |
3 | 47.08 | 1.50 | 48.27 | 4.08 | 45.34 | −2.24 | 46.90 | 1.11 | 46.38 |
4 | 47.02 | 1.01 | 48.88 | 5.01 | 45.87 | −1.46 | 47.26 | 1.52 | 46.55 |
5 | 47.42 | 1.50 | 46.71 | −0.02 | 43.93 | −5.97 | 46.02 | −1.50 | 46.72 |
6 | 47.21 | 1.41 | 44.67 | −4.04 | 47.61 | 2.28 | 46.50 | −0.12 | 46.55 |
7 | 46.87 | 0.48 | 45.64 | −2.14 | 46.17 | −1.01 | 46.23 | −0.89 | 46.64 |
8 | 45.22 | −3.39 | 46.36 | −0.96 | 46.54 | −0.58 | 46.04 | −1.64 | 46.81 |
9 | 45.26 | −3.49 | 46.25 | −1.39 | 44.77 | −4.54 | 45.43 | −3.14 | 46.9 |
10 | 45.16 | −3.33 | 44.82 | −4.07 | 45.23 | −3.19 | 45.07 | −3.53 | 46.72 |
Error rate range | [−3.49%, 1.50%] | [−4.07%, 5.01%] | [−5.97%, 2.28%] | [−3.53%, 1.52%] |
Number | Error Rate of Test 2 (%) | Error Rate of Test 3 (%) | Error Rate of Test 4 (%) | Error Rate of Test 5 (%) | Error Rate of Test 6 (%) | Error Rate of Test 7 (%) | Error Rate of Test 8 (%) |
---|---|---|---|---|---|---|---|
1 | −3.08 | 0.25 | −0.01 | 1.55 | −2.04 | −1.22 | −0.77 |
2 | −1.14 | 1.93 | 1.84 | 2.82 | −1.39 | 0.27 | 1.90 |
3 | 2.92 | 1.20 | 2.77 | 1.80 | 0.86 | 2.38 | −0.84 |
4 | 0.47 | −1.28 | 0.87 | 1.96 | −1.07 | 4.12 | −0.28 |
5 | −1.91 | 0.84 | 3.61 | −0.88 | 1.24 | 0.19 | 3.20 |
6 | 1.02 | 1.89 | 2.20 | 2.06 | 0.26 | −1.39 | 1.65 |
7 | 1.61 | −0.88 | −2.23 | 2.87 | −1.55 | −0.46 | 1.06 |
8 | −2.77 | 1.88 | 0.33 | −1.39 | −0.51 | −2.86 | 0.78 |
9 | −2.23 | −1.36 | 1.25 | 0.36 | −0.04 | 2.18 | 1.07 |
10 | 1.65 | 2.62 | −0.24 | 1.54 | 3.97 | 0.98 | 1.65 |
Error rate range | [−3.08%, 2.92%] | [−1.36%, 2.62%] | [−2.23%, 3.61%] | [−1.39%, 2.87%] | [−2.04%, 3.97%] | [−2.86%, 4.12%] | [−0.84%, 3.20%] |
Number | Plate | Light | Average | Satellite Speed (km/h) | |||
---|---|---|---|---|---|---|---|
Speed (km/h) | Error Rate (%) | Speed (km/h) | Error Rate (%) | Speed (km/h) | Error Rate (%) | ||
1 | 28.84 | −3.62% | 30.92 | 3.35% | 29.88 | −0.14% | 29.92 |
2 | 29.97 | 2.62% | 30.57 | 4.68% | 30.27 | 3.65% | 29.2 |
3 | 30.58 | 1.83% | 31.36 | 4.42% | 30.97 | 3.12% | 30.03 |
4 | 31.80 | 5.22% | 30.96 | 2.44% | 31.38 | 3.83% | 30.22 |
5 | 31.04 | 1.44% | 29.62 | −3.20% | 30.33 | −0.88% | 30.6 |
6 | 31.12 | 1.69% | 29.72 | −2.87% | 30.42 | −0.59% | 30.6 |
7 | 30.91 | 0.41% | 29.45 | −4.35% | 30.18 | −1.97% | 30.79 |
8 | 29.05 | −4.76% | 32.30 | 5.90% | 30.67 | 0.57% | 30.5 |
9 | 29.78 | −2.68% | 30.35 | −0.81% | 30.07 | −1.74% | 30.6 |
10 | 32.01 | 4.51% | 31.77 | 3.74% | 31.89 | 4.12% | 30.63 |
Error rate range | [−4.76%, 5.22%] | [−4.35%, 5.90%] | [−1.97%, 4.12%] |
Number | Error Rate of Test 2 (%) | Error Rate of Test 3 (%) | Error Rate of Test 4 (%) | Error Rate of Test 5 (%) | Error Rate of Test 6 (%) | Error Rate of Test 7 (%) | Error Rate of Test 8 (%) |
---|---|---|---|---|---|---|---|
1 | −3.02 | 1.53 | −2.21 | 1.96 | −2.67 | −0.57 | 0.14 |
2 | −1.55 | 2.11 | 0.36 | 2.67 | 0.11 | −1.95 | 1.48 |
3 | 4.50 | 1.32 | 2.22 | 0.76 | −0.37 | 1.41 | −1.57 |
4 | −1.48 | −3.36 | 4.58 | 3.53 | −0.23 | −0.57 | −0.02 |
5 | −2.24 | 0.92 | −1.31 | −2.08 | −2.24 | 1.95 | 2.58 |
6 | 0.42 | 1.63 | −0.23 | 4.24 | 1.84 | 1.03 | 0.19 |
7 | 2.89 | 0.33 | −0.82 | 2.54 | −0.26 | −0.87 | 4.22 |
8 | −2.99 | 1.54 | −2.76 | −0.68 | −1.99 | 1.53 | 1.07 |
9 | −4.16 | −0.26 | 2.49 | −1.44 | −4.02 | −2.14 | 3.25 |
10 | 1.02 | 3.33 | 3.00 | 2.67 | −3.26 | 3.37 | 1.95 |
Error rate range | [−4.16%, 4.50%] | [−3.36%, 3.33%] | [−2.76%, 4.58%] | [−2.08%, 4.24%] | [−4.02%, 1.84%] | [−2.14%, 3.37%] | [−1.57%, 4.22%] |
Number | Logo | Light | Average | Satellite Speed (km/h) | |||
---|---|---|---|---|---|---|---|
Result (km/h) | Error Rate (%) | Result (km/h) | Error Rate (%) | Result (km/h) | Error Rate (%) | ||
1 | 42.96 | −3.20 | 43.59 | −1.78 | 43.28 | −2.49 | 44.38 |
2 | 44.61 | −0.34 | 44.47 | −0.65 | 44.54 | −0.49 | 44.76 |
3 | 44.73 | −0.24 | 47.01 | 4.84 | 45.87 | 2.30 | 44.84 |
4 | 46.98 | 4.38 | 44.75 | −0.59 | 45.87 | 1.90 | 45.01 |
5 | 44.52 | −1.26 | 43.14 | −4.32 | 43.83 | −2.79 | 45.09 |
6 | 46.09 | 2.22 | 44.40 | −1.54 | 45.25 | 0.34 | 45.09 |
7 | 44.68 | −0.94 | 46.44 | 2.97 | 45.56 | 1.02 | 45.1 |
8 | 44.04 | −2.32 | 44.28 | −1.80 | 44.16 | −2.06 | 45.09 |
9 | 45.83 | 1.65 | 42.96 | −4.72 | 44.40 | −1.54 | 45.09 |
10 | 46.44 | 2.90 | 45.28 | 0.33 | 45.86 | 1.62 | 45.13 |
Error rate range | [−3.20%, 4.38%] | [−4.72%, 4.84%] | [−2.79%, 2.30%] |
Number | Error Rate of Test 2 (%) | Error Rate of Test 3 (%) | Error Rate of Test 4 (%) | Error Rate of Test 5 (%) | Error Rate of Test 6 (%) | Error Rate of Test 7 (%) | Error Rate of Test 8 (%) |
---|---|---|---|---|---|---|---|
1 | −1.38 | 0.51 | 0.45 | 1.85 | −2.13 | −2.50 | −0.02 |
2 | −0.03 | 0.97 | 3.26 | 2.36 | 0.88 | 0.67 | 3.57 |
3 | 2.27 | 1.40 | 1.90 | 2.48 | 0.92 | 2.38 | −1.64 |
4 | 1.29 | −0.91 | 0.52 | 0.01 | 1.77 | −1.11 | −0.11 |
5 | 0.21 | 2.29 | 3.45 | −1.16 | −3.00 | 2.52 | 4.31 |
6 | 0.01 | 1.45 | 1.99 | 0.93 | −0.88 | −1.26 | 4.62 |
7 | 4.33 | −2.99 | −1.39 | 3.84 | −1.58 | −0.61 | −0.82 |
8 | −5.61 | 3.93 | 0.42 | −3.85 | −0.77 | 0.22 | 1.24 |
9 | −0.81 | −1.08 | 1.98 | 0.76 | −2.96 | 1.02 | −0.02 |
10 | 0.36 | 2.03 | 1.25 | −0.11 | −3.63 | 4.99 | 0.62 |
Error rate range | [−5.61%, 4.33%] | [−2.99%, 3.93%] | [−1.39%, 3.45%] | [−3.85%, 3.84%] | [−3.63%, 1.77%] | [−2.50%, 4.99%] | [−1.64%, 4.62%] |
Number | Light (km/h) | Satellite Speed (km/h) | Error Rate (%) |
---|---|---|---|
1 | 37.31 | 36.12 | 3.30 |
2 | 36.24 | 36.11 | 0.37 |
3 | 36.86 | 36.19 | 1.84 |
4 | 34.56 | 36.26 | −4.68 |
5 | 37.75 | 36.33 | 3.90 |
6 | 36.67 | 36.49 | 0.49 |
7 | 35.22 | 36.19 | −2.68 |
8 | 38.17 | 36.25 | 5.30 |
9 | 36.72 | 36.21 | 1.41 |
10 | 37.26 | 36.22 | 2.87 |
Error rate range | [−4.68%, 5.30%] |
Number | Error Rate of Test 2 (%) | Error Rate of Test 3 (%) | Error Rate of Test 4 (%) | Error Rate of Test 5 (%) | Error Rate of Test 6 (%) | Error Rate of Test 7 (%) | Error Rate of Test 8 (%) |
---|---|---|---|---|---|---|---|
1 | 3.35 | 1.82 | 2.96 | −2.85 | −0.03 | 2.56 | −1.78 |
2 | 4.68 | 4.57 | 1.61 | 0.95 | 1.61 | 4.39 | −0.65 |
3 | 4.42 | −1.23 | 1.07 | −2.24 | 5.01 | −3.90 | 4.84 |
4 | 2.44 | 0.74 | 1.21 | −1.46 | −0.15 | 0.59 | −0.59 |
5 | −3.20 | 4.41 | −3.82 | −5.97 | 5.21 | 4.18 | −4.32 |
6 | −2.87 | 2.10 | 4.16 | 2.28 | −1.25 | 4.67 | −1.54 |
7 | −4.35 | −0.03 | 4.16 | −1.01 | 1.67 | 3.64 | 2.97 |
8 | 5.90 | −3.87 | −4.86 | −0.58 | 5.03 | 2.28 | −1.80 |
9 | −0.81 | 4.14 | −2.46 | −4.54 | −2.13 | 3.25 | −4.72 |
10 | 3.74 | 4.33 | 0.51 | −3.19 | 4.81 | 0.19 | 0.33 |
Error rate range | [−4.35%, 5.90%] | [−3.87%, 4.57%] | [−4.86%, 4.16%] | [−5.97%, 2.28%] | [−2.13%, 5.21%] | [−3.90%, 4.67%] | [−4.72%, 4.84%] |
Number | Proposed System (km/h) | System in [14] (km/h) | Satellite Speed (km/h) | ||||
---|---|---|---|---|---|---|---|
Speed (km/h) | Error (km/h) | Error Rate (%) | Speed (km/h) | Error (km/h) | Error Rate (%) | ||
1 | 32.39 | 0.01 | −0.03 | 32.10 | −0.30 | −0.94 | 32.4 |
2 | 33.00 | 0.60 | 1.84 | 32.07 | −0.33 | −1.02 | 32.4 |
3 | 33.34 | 0.90 | 2.77 | 33.91 | 1.47 | 4.53 | 32.44 |
4 | 32.75 | 0.28 | 0.87 | 32.98 | 0.51 | 1.56 | 32.47 |
5 | 33.61 | 1.17 | 3.61 | 33.72 | 1.28 | 3.94 | 32.44 |
6 | 33.11 | 0.71 | 2.20 | 33.24 | 0.84 | 2.61 | 32.4 |
7 | 31.59 | −0.72 | −2.23 | 31.05 | −1.26 | −3.91 | 32.31 |
8 | 32.42 | 0.11 | 0.33 | 32.36 | 0.05 | 0.15 | 32.31 |
9 | 32.74 | 0.40 | 1.25 | 32.27 | −0.07 | −0.21 | 32.34 |
10 | 32.23 | −0.08 | −0.24 | 31.27 | −1.04 | −3.21 | 32.31 |
Error rate range | [−2.23%, 3.61%] | [−3.91%, 4.53%] |
RMSE (km/h) | Max Error (km/h) | |
---|---|---|
Luvizon et al. [8] | 1.36 | [−4.68, +6.00] |
Tang et al. [60] | 6.59 | NA |
VSS-SURF [61] | 1.29 | [−2.0, +2.0] |
System in [14] | 0.65 | [−1.6, +1.1] |
Proposed System | 0.43 | [−0.72, +1.17] |
Number | Proposed System (km/h) | System in [14] (km/h) | Satellite Speed (km/h) | ||||
---|---|---|---|---|---|---|---|
Speed (km/h) | Error (km/h) | Error Rate (%) | Speed (km/h) | Error (km/h) | Error Rate (%) | ||
1 | 32.96 | −0.84 | −2.50 | Invalid | Invalid | Invalid | 33.8 |
2 | 33.79 | 0.22 | 0.67 | Invalid | Invalid | Invalid | 33.56 |
3 | 34.57 | 0.81 | 2.38 | Invalid | Invalid | Invalid | 33.76 |
4 | 33.39 | −0.37 | −1.11 | Invalid | Invalid | Invalid | 33.76 |
5 | 34.61 | 0.85 | 2.52 | Invalid | Invalid | Invalid | 33.76 |
6 | 33.24 | −0.42 | −1.26 | Invalid | Invalid | Invalid | 33.66 |
7 | 33.36 | −0.20 | −0.61 | Invalid | Invalid | Invalid | 33.56 |
8 | 33.48 | 0.08 | 0.22 | Invalid | Invalid | Invalid | 33.4 |
9 | 33.70 | 0.34 | 1.02 | Invalid | Invalid | Invalid | 33.36 |
10 | 34.91 | 1.66 | 4.99 | Invalid | Invalid | Invalid | 33.25 |
Error rate range | [−2.50%, 4.99%] | NA |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, L.; Luo, J.; Song, X.; Li, M.; Wen, P.; Xiong, Z. Robust Vehicle Speed Measurement Based on Feature Information Fusion for Vehicle Multi-Characteristic Detection. Entropy 2021, 23, 910. https://doi.org/10.3390/e23070910
Yang L, Luo J, Song X, Li M, Wen P, Xiong Z. Robust Vehicle Speed Measurement Based on Feature Information Fusion for Vehicle Multi-Characteristic Detection. Entropy. 2021; 23(7):910. https://doi.org/10.3390/e23070910
Chicago/Turabian StyleYang, Lei, Jianchen Luo, Xiaowei Song, Menglong Li, Pengwei Wen, and Zixiang Xiong. 2021. "Robust Vehicle Speed Measurement Based on Feature Information Fusion for Vehicle Multi-Characteristic Detection" Entropy 23, no. 7: 910. https://doi.org/10.3390/e23070910
APA StyleYang, L., Luo, J., Song, X., Li, M., Wen, P., & Xiong, Z. (2021). Robust Vehicle Speed Measurement Based on Feature Information Fusion for Vehicle Multi-Characteristic Detection. Entropy, 23(7), 910. https://doi.org/10.3390/e23070910