Time Series Modelling
Acknowledgments
Conflicts of Interest
References
- Nie, S.Y.; Wu, X.Q. A historical study about the developing process of the classical linear time series models. In Proceedings of the Eighth International Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA), Huangshan, China, 12–14 July 2016; Yin, Z., Pan, L., Fang, X., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; Volume 212, pp. 425–433. [Google Scholar]
- Box, G.E.P.; Jenkins, G.M. Time Series Analysis: Forecasting and Control, 1st ed.; Holden-Day: San Francisco, CA, USA, 1970. [Google Scholar]
- Nono, A.; Uchiyama, Y.; Nakagawa, K. Entropy Based Student’s t-Process Dynamical Model. Entropy 2021, 23, 560. [Google Scholar] [CrossRef] [PubMed]
- Davidescu, A.A.; Apostu, S.A.; Paul, A. Comparative Analysis of Different Univariate Forecasting Methods in Modelling and Predicting the Romanian Unemployment Rate for the Period 2021–2022. Entropy 2021, 23, 325. [Google Scholar] [CrossRef] [PubMed]
- Lindstrom, M.R.; Jung, H.; Larocque, D. Functional Kernel Density Estimation: Point and Fourier Approaches to Time Series Anomaly Detection. Entropy 2020, 22, 1363. [Google Scholar] [CrossRef] [PubMed]
- Vivas, E.; Allende-Cid, H.; Salas, R. A Systematic Review of Statistical and Machine Learning Methods for Electrical Power Forecasting with Reported MAPE Score. Entropy 2020, 22, 1412. [Google Scholar] [CrossRef] [PubMed]
- Sundararajan, R.R.; Frostig, R.; Ombao, H. Modeling Spectral Properties in Stationary Processes of Varying Dimensions with Applications to Brain Local Field Potential Signals. Entropy 2020, 22, 1375. [Google Scholar] [CrossRef]
- Bauer, D.; Buschmeier, R. Asymptotic Properties of Estimators for Seasonally Cointegrated State Space Models Obtained Using the CVA Subspace Method. Entropy 2021, 23, 436. [Google Scholar] [CrossRef]
- Nüßgen, I.; Schnurr, A. Ordinal Pattern Dependence in the Context of Long-Range Dependence. Entropy 2021, 23, 670. [Google Scholar] [CrossRef] [PubMed]
- Weiß, C.H. An Introduction to Discrete-Valued Time Series, 1st ed.; John Wiley & Sons, Inc.: Chichester, UK, 2018. [Google Scholar]
- Huang, J.; Zhu, F. A New First-Order Integer-Valued Autoregressive Model with Bell Innovations. Entropy 2021, 23, 713. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Zhu, F. A New Extension of Thinning-Based Integer-Valued Autoregressive Models for Count Data. Entropy 2021, 23, 62. [Google Scholar] [CrossRef]
- Yu, K.; Wang, H. A New Overdispersed Integer-Valued Moving Average Model with Dependent Counting Series. Entropy 2021, 23, 706. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Cheng, J.; Wang, D. Statistical Inference for Periodic Self-Exciting Threshold Integer-Valued Autoregressive Processes. Entropy 2021, 23, 765. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Cui, S.; Wang, D. Monitoring the Zero-Inflated Time Series Model of Counts with Random Coefficient. Entropy 2021, 23, 372. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.; Lee, S.; Kim, D. Robust Estimation for Bivariate Poisson INGARCH Models. Entropy 2021, 23, 367. [Google Scholar] [CrossRef] [PubMed]
- Shapovalova, Y.; Baştürk, N.; Eichler, M. Multivariate Count Data Models for Time Series Forecasting. Entropy 2021, 23, 718. [Google Scholar] [CrossRef] [PubMed]
- Stapper, M. Count Data Time Series Modelling in Julia—The CountTimeSeries.jl Package and Applications. Entropy 2021, 23, 666. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Weiß, C.H. Time Series Modelling. Entropy 2021, 23, 1163. https://doi.org/10.3390/e23091163
Weiß CH. Time Series Modelling. Entropy. 2021; 23(9):1163. https://doi.org/10.3390/e23091163
Chicago/Turabian StyleWeiß, Christian H. 2021. "Time Series Modelling" Entropy 23, no. 9: 1163. https://doi.org/10.3390/e23091163
APA StyleWeiß, C. H. (2021). Time Series Modelling. Entropy, 23(9), 1163. https://doi.org/10.3390/e23091163