Weighted Cumulative Past Extropy and Its Inference
Abstract
:1. Introduction
2. Weighted Cumulative Past Extropy
- (i)
- (ii)
- where , , and .
3. Some Characterization Results Based on the Order Statistics
4. Some Inequalities
- (i)
- (ii)
- ,where .
5. Connections to Reliability Theory
6. Empirical WCPJ
6.1. Uniform Goodness of Fit Test
6.2. Power of the Test
- (1)
- Beta distribution with pdf: :
- (i)
- Beta (1.5, 1.5)
- (ii)
- Beta (0.5, 0.3)
- (iii)
- Beta (10, 1);
- (2)
- Kumaraswamy distribution with cdf: :
- (i)
- Kuma (0.5, 5)
- (ii)
- Kuma (0.5, 0.3)
- (iii)
- Kuma (10, 10);
- (3)
- Piecewise distribution function with cdf
- (i)
- Piec (2)
- (ii)
- Piec (3.5)
- (iii)
- Piec (5)
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef] [Green Version]
- Cover, T.M.; Thomas, J.A. Elements of Information Theory, 2nd ed.; John Wiley & Sons Inc.: Hoboken, NY, USA, 2006. [Google Scholar]
- Belis, M.; Guiasu, S. A quantitative-qualitative measure of information in cybernetic systems. IEEE Trans. Inf. Technol. Biomed. 1968, 4, 593–594. [Google Scholar] [CrossRef]
- Guiasu, S. Grouping data by using the weighted entropy. J. Stat. Plann. Inference 1986, 15, 63–69. [Google Scholar] [CrossRef]
- Di Crescenzo, A.; Longobardi, M. On weighted residual and past entropies. Sci. Math. Jpn. 2006, 64, 255–266. [Google Scholar]
- Rao, M.; Chen, Y.; Vemuri, B.C.; Wang, F. Cumulative residual entropy: A new measure of information. IEEE Trans. Inf. Theory 2004, 50, 1220–1228. [Google Scholar] [CrossRef]
- Lad, F.; Sanfilippo, G.; Agrò, G. Extropy: Complementary dual of entropy. Stat. Sci. 2015, 30, 40–58. [Google Scholar] [CrossRef]
- Qiu, G.; Jia, K. The Residual Extropy of Order Statistics. Stat. Probab. Lett. 2018, 133, 15–22. [Google Scholar] [CrossRef]
- Qiu, G. The extropy of order statistics and record values. Stat. Probab. Lett. 2017, 120, 52–60. [Google Scholar] [CrossRef]
- Qiu, G.; Wang, L.; Wang, X. On Extropy Properties of Mixed Systems. Probab. Eng. Inf. Sci. 2019, 33, 471–486. [Google Scholar] [CrossRef]
- Raqab, M.Z.; Qiu, G. On extropy properties of ranked set sampling. Statistics 2019, 53, 210–226. [Google Scholar] [CrossRef]
- Jahanshahi, S.M.A.; Zarei, H.; Khammar, A. On Cumulative Residual Extropy. Probab. Eng. Inf. Sci. 2020, 34, 605–625. [Google Scholar] [CrossRef]
- Kazemi, M.R.; Tahmasebi, S.; Cali, C.; Longobardi, M. Cumulative residual extropy of minimum ranked set sampling with unequal samples. Results Appl. Math. 2021, 10, 100156. [Google Scholar] [CrossRef]
- Vaselabadi, N.M.; Tahmasebi, S.; Kazemi, M.R.; Buono, F. Results on Varextropy Measure of Random Variables. Entropy 2021, 23, 356. [Google Scholar] [CrossRef]
- Buono, F.; Longobardi, M. A dual measure of uncertainty: The Deng Extropy. Entropy 2020, 22, 582. [Google Scholar] [CrossRef]
- Kazemi, M.R.; Tahmasebi, S.; Buono, F.; Longobardi, M. Fractional Deng Entropy and Extropy and Some Applications. Entropy 2021, 23, 623. [Google Scholar] [CrossRef]
- Sathar, E.A.; Nair, R.D. On dynamic weighted extropy. J. Comput. Appl. Math. 2021, 393, 113507. [Google Scholar] [CrossRef]
- Kamari, O.; Buono, F. On extropy of past lifetime distribution. Ric. di Mat. 2021, 70, 505–515. [Google Scholar] [CrossRef]
- Sathar, E.A.; Jose, J. Past Extropy of k-Records. Stochastics Qual. Control. 2020, 35, 25–38. [Google Scholar] [CrossRef]
- Alizadeh Noughabi, H.; Jarrahiferiz, J. On the estimation of extropy. J. Nonparametr. Stat. 2019, 31, 88–99. [Google Scholar] [CrossRef]
- Al-Labadi, L.; Berry, S. Bayesian estimation of extropy and goodness of fit tests. J. Appl. Stat. 2022, 49, 357–370. [Google Scholar] [CrossRef]
- Hashempour, M.; Kazemi, M.R.; Tahmasebi, S. On weighted cumulative residual extropy: Characterization, estimation and testing. Statistics 2022, 56, 681–698. [Google Scholar] [CrossRef]
- Arnold, B.C.; Balakrishnan, N.; Nagaraja, H.N. A First Course in Order Statistics; John Wiley and Sons: New York, NY, USA, 1992. [Google Scholar]
- Shaked, M.; Shanthikumar, J.G. Stochastic Orders; Springer: New York, NY, USA, 2007. [Google Scholar]
- Li, X.; Lu, J. Stochastic comparisons on residual life and inactivity time of series and parallel systems. Probab. Eng. Inf. Sci. 2003, 17, 267–275. [Google Scholar] [CrossRef]
- Misra, N.; Gupta, N.; Dhariyal, I.D. Stochastic properties of residual life and inactivity time at a random time. Stoch. Model. 2008, 24, 89–102. [Google Scholar] [CrossRef]
- Ahmad, I.A.; Kayid, M. Characterizations of the RHR and MIT orderings and the DRHR and IMIT classes of life distributions. Probab. Eng. Inf. Sci. 2005, 19, 447–461. [Google Scholar] [CrossRef]
- Ahmad, I.A.; Kayid, M.; Pellery, F. Further results involving the MIT order and IMIT class. Probab. Eng. Inf. Sci. 2005, 19, 377–395. [Google Scholar] [CrossRef] [Green Version]
- Kayid, M.; Ahmad, I.A. On the mean inactivity time ordering with reliability applications. Probab. Eng. Inf. Sci. 2004, 18, 395–409. [Google Scholar] [CrossRef]
- Nanda, A.K.; Singh, H.; Misra, N.; Paul, P. Reliability properties of reversed residual lifetime. Commun. Stat. Theory Methods 2003, 32, 2031–2042. [Google Scholar] [CrossRef]
- Quesenberry, C.P.; Miller, F.L., Jr. Power studies of some tests for uniformity. J. Stat. Comput. Simul. 1977, 5, 169–191. [Google Scholar] [CrossRef]
- Frosini, B.V. On the Distribution and Power of a Goodness-of-Fit Statistic with Parametric and Nonparametric Applications, “Goodness-of-Fit”; Revesz, P., Sarkadi, K., Sen, P., Eds.; North-Holland: Amsterdam, The Netherlands; Oxford, UK; New York, NY, USA, 1987; pp. 133–154. [Google Scholar]
- Cordeiro, G.M.; de Castro, M. A new family of generalized distributions. J. Stat. Comput. Simul. 2009, 81, 883–898. [Google Scholar] [CrossRef]
- Tahmasebi, S.; Toomaj, A. On negative cumulative extropy with applications. Commun. Stat. Theory Methods 2022, 51, 5025–5047. [Google Scholar] [CrossRef]
- Balakrishnan, N.; Buono, F.; Longobardi, M. On Tsallis extropy with an application to pattern recognition. Stat. Probab. Lett. 2022, 180, 109241. [Google Scholar] [CrossRef]
- Tahmasebi, S.; Kazemi, M.R.; Keshavarz, A.; Jafari, A.A.; Buono, F. Compressive Sensing Using Extropy Measures of Ranked Set Sampling. Math. Slovaca 2022. accepted for publication. [Google Scholar]
n | ||||
---|---|---|---|---|
Cutoff Points | 20 | 30 | 40 | 50 |
−0.1463 | −0.1446 | −0.1429 | −0.1405 | |
−0.0668 | −0.0785 | −0.0861 | −0.0910 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kazemi, M.R.; Hashempour, M.; Longobardi, M. Weighted Cumulative Past Extropy and Its Inference. Entropy 2022, 24, 1444. https://doi.org/10.3390/e24101444
Kazemi MR, Hashempour M, Longobardi M. Weighted Cumulative Past Extropy and Its Inference. Entropy. 2022; 24(10):1444. https://doi.org/10.3390/e24101444
Chicago/Turabian StyleKazemi, Mohammad Reza, Majid Hashempour, and Maria Longobardi. 2022. "Weighted Cumulative Past Extropy and Its Inference" Entropy 24, no. 10: 1444. https://doi.org/10.3390/e24101444
APA StyleKazemi, M. R., Hashempour, M., & Longobardi, M. (2022). Weighted Cumulative Past Extropy and Its Inference. Entropy, 24(10), 1444. https://doi.org/10.3390/e24101444