Rate-Compatible LDPC Codes for Continuous-Variable Quantum Key Distribution in Wide Range of SNRs Regime
Abstract
:1. Introduction
2. Preliminaries
2.1. Methods of Obtaining Degree Distribution
2.1.1. Discrete Density Evolution
- We firstly define two functions: quantized function Q and probability mass function S.is the largest integer not greater than x; and is the smallest integer not less than x. The value range of decoded message is and evenly divided into intervals; the quantization interval is given by .In which two-input operator R is
- The check node and variable node updating of discrete density evolution is⨂ is discrete convolution and l is the iteration number. The initial value is
- Finally, we calculate the error rate withEnd the procedure when the or l reaches the maximum number of iterations. Otherwise, we continue to update the check node and variable node.
2.1.2. Differential Evolution
- Set channel noise threshold , target error probability , maximum number of iterations , maximum degree of variable node and the number of terms of degree distribution polynomial n.
- Randomly generate vectors for the degree distribution of variable node. Use discretized density to evolve each vector and obtain the respective error probability . The vector with the lowest error probability is marked as the best vector and its error probability is marked as .
- For each i, randomly choose four vectors from set of and the new vector is updated byCalculate the corresponding error probability for each new vector .
- For each i, compare with and let if . The vector with the lowest error probability is marked as the best vector and its error probability is marked as .
- If the error probability corresponding to the best vector , update the vectors again and return to step (4). If , the is the ideal vector that we want.
2.2. Constructions
2.2.1. Random Construction
2.2.2. Progressive-Edge-Growth Algorithm
- Determine the number of check node, variable node and the degree distribution of variable node.
- Randomly choose a variable node and find the check node with the least number of connected edges in the Tanner graph. Then connect the variable node and the check node with an edge and take it as the first edge of the variable node .
- Take the variable node as the root node and expand the current Tanner diagram. When the expansion depth is l, the set of check nodes adjacent to is recorded as . The is the complement set of , where the complete set is the set of all variable nodes. Expand the Tanner graph with the root node and the depth of l. When , and the number of nodes contained in stops increasing but is still less than the number of matrix rows l, connect the check node with the least number of connected edges to the variable node .
- Repeat step (2) to add edges to the selected variable nodes until all of them are added.
- Repeat steps (1) to (3) to add edge for all other variable nodes.
2.2.3. QC-LDPC Extension
2.3. Methods of Rate-Compatible
3. Proposed Check Matrix for RC-LDPC Codes with Wide Range of SNRs Regime
3.1. Obtaining Degree Distribution
Algorithm 1: Obtaining the ultimate variable degree distribution with density evolution and differential evolution |
|
3.2. Constructing Check Matrix for RC-LDPC Code
4. Simulation Experiment
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Rate | Degree Distribution | SNR | C | |
---|---|---|---|---|
0.1 | 2.541 | 0.15 | 0.0488 | |
0.05 | 5.91 | 0.03 | 0.0213 | |
0.02 | 2.541 | 0.15 | 0.1008 | |
References
- Gisin, N.; Ribordy, G.; Tittel, W.; Zbinden, H. Quantum cryptography. Rev. Mod. Phys. 2001, 74, 145–195. [Google Scholar] [CrossRef] [Green Version]
- Scarani, V.; Bechmann-Pasquinucci, H.; Cerf, N.J.; Dušek, M.; Lütkenhaus, N.; Peev, M. The security of practical quantum key distribution. Rev. Mod. Phys. 2009, 81, 1301. [Google Scholar] [CrossRef] [Green Version]
- Zhu, M.; Hu, M.; Guo, B. Free-Space QKD with Modulating Retroreflectors Based on the B92 Protocol. Entropy 2022, 24, 204. [Google Scholar] [CrossRef]
- Hua, X.; Hu, M.; Guo, B. Multi-User Measurement-Device-Independent Quantum Key Distribution Based on GHZ Entangled State. Entropy 2022, 24, 841. [Google Scholar] [CrossRef] [PubMed]
- Alia, O.; Tessinari, R.S.; Bahrani, S.; Bradley, T.D.; Sakr, H.; Harrington, K.; Hayes, J.; Chen, Y.; Petropoulos, P.; Richardson, D.; et al. DV-QKD Coexistence With 1.6 Tbps Classical Channels Over Hollow Core Fibre. J. Light. Technol. 2022, 40, 5522–5529. [Google Scholar] [CrossRef]
- Weedbrook, C.; Pirola, S.; García-Patrón, R.; Cerf, N.J.; Ralph, T.C.; Shapiro, J.H.; Lloyd, S. Gaussian quantum information. Rev. Mod. Phys. 2011, 84, 621–669. [Google Scholar] [CrossRef]
- Jain, N.; Chin, H.M.; Mani, H.; Lupo, C.; Nikolic, D.S.; Kordts, A.; Pirola, S.; Pedersen, T.B.; Kolb, M.; Omer, B.; et al. Practical continuous-variable quantum key distribution with composable security. Nat. Commun. 2022, 13, 4740. [Google Scholar] [CrossRef]
- Kovalenko, O.; Ra, Y.S.; Cai, Y.; Usenko, V.C.; Fabre, C.; Treps, N.; Filip, R. Frequency-multiplexed entanglement for continuous-variable quantum key distribution. Photonics Res. 2021, 9, 2351–2359. [Google Scholar] [CrossRef]
- Yang, S.; Lu, Z.G.; Li, Y. High-Speed Post-Processing in Continuous-Variable Quantum Key Distribution Based on FPGA Implementation. J. Light. Technol. 2020, 38, 3935. [Google Scholar] [CrossRef]
- Mink, A.; Nakassis, A. LDPC for QKD Reconciliation. arXiv 2012, arXiv:1205.4977. [Google Scholar]
- Chen, Y.A.; Zhang, Q.; Chen, T.Y.; Cai, W.Q.; Liao, S.K.; Zhang, J.; Chen, K.; Yin, J.; Ren, J.G.; Chen, Z.; et al. An integrated space-to-ground quantum communication network over 4600 kilometres. Nature 2021, 589, 214–219. [Google Scholar] [CrossRef]
- Yin, J.; Cao, Y.; Li, Y.H.; Liao, S.K.; Zhang, L.; Ren, J.G.; Pan, J.W. Satellite-based entanglement distribution over 1200 kilometers. Science 2017, 356, 1140–1144. [Google Scholar] [CrossRef] [Green Version]
- Zhao, W.; Shi, R.; Ruan, X.; Guo, Y.; Mao, Y.; Feng, Y. Monte Carlo-based security analysis for multi-mode continuous-variable quantum key distribution over underwater channel. Quantum Inf. Process. 2022, 21, 186. [Google Scholar] [CrossRef]
- Liu, H.Y.; Tian, X.H.; Gu, C.; Fan, P.; Ni, X.; Yang, R.; Zhang, J.N.; Hu, M.; Guo, J.; Zhu, S.N.; et al. Drone-based entanglement distribution towards mobile quantum networks. Natl. Sci. Rev. 2020, 5, 921–928. [Google Scholar] [CrossRef] [Green Version]
- Gao, C.H.; Guo, Y.; Jiang, D.; Liu, J.; Chen, L.J. Multimatrix rate-compatible reconciliation for quantum key distribution. Phys. Rev. A 2020, 102, 022604. [Google Scholar] [CrossRef]
- Zhang, K.; Jiang, X.Q.; Feng, Y.; Qiu, R.; Bai, E. High Efficiency Continuous-Variable Quantum Key Distribution Based on ATSC 3.0 LDPC Codes. Entropy 2020, 22, 1087. [Google Scholar] [CrossRef]
- Richardson, T.J. The capacity of low-density parity-check codes under message-passing decoding. IEEE Trans. Inf. Theory 2001, 47, 599. [Google Scholar] [CrossRef]
- Chung, S.Y.; Richardson, T.J.; Urbanke, R.L. Analysis of sum-product decoding of low-density parity-check codes using a Gaussian approximation. Inf. Theory IEEE Trans. 2001, 47, 657–670. [Google Scholar] [CrossRef] [Green Version]
- Chung, S.Y. On the design of low-density parity-check codes within 0.0045 dB of the Shannon limit. IEEE Commun. Lett. 2002, 5, 58–60. [Google Scholar] [CrossRef]
- Storn, R.; Price, K. Differential Evolution—A Simple and Efficient Heuristic for global Optimization over Continuous Spaces. J. Glob. Optim. 1997, 11, 341–359. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, Y.C.; Li, Z.; Xu, B.; Yu, S.; Guo, H. Efficient rate-adaptive reconciliation for continuous-variable quantum key distribution. arXiv 2017, arXiv:1703.04916. [Google Scholar]
- Jouguet, P.; Kunz-Jacques, S.; Leverrier, A. Long Distance Continuous-Variable Quantum Key Distribution with a Gaussian Modulation. Phys. Rev. A 2011, 84, 062317. [Google Scholar] [CrossRef]
- Bai, Z.; Wang, X.; Yang, S.; Li, Y. High-efficiency Gaussian key reconciliation in continuous variable quantum key distribution. Sci. China Phys. Mech. Astron. 2016, 59, 614201. [Google Scholar] [CrossRef]
- Bai, Z.; Yang, S.; Li, Y. High-efficiency reconciliation for continuous variable quantum key distribution. Jpn. J. Appl. Phys. 2017, 56, 044401. [Google Scholar] [CrossRef]
- Jeong, S.; Jung, H.; Ha, J. Rate-compatible multi-edge type low-density parity-check code ensembles for continuous-variable quantum key distribution systems. NPJ Quantum Inf. 2022, 8, 6. [Google Scholar] [CrossRef]
- Zhang, C.M.; Li, M.; Huang, J.Z.; Li, H.W.; Li, F.Y.; Wang, C.; Yin, Z.Q.; Chen, W.; Han, Z.F.; Sripimanwat, K.; et al. Fast implementation of length-adaptive privacy amplification in quantum key distribution. Chin. Phys. B 2014, 23, 090310. [Google Scholar] [CrossRef]
- Yan, B.; Li, Q.; Mao, H.; Chen, N. An efficient hybrid hash based privacy amplification algorithm for quantum key distribution. Quantum Inf. Process. 2022, 21, 130. [Google Scholar] [CrossRef]
- Shi, J.J.; Li, B.P.; Huang, D. Reconciliation for CV-QKD using globally-coupled LDPC codes. Chin. Phys. B 2020, 29, 040301. [Google Scholar] [CrossRef]
- Fossier, S.; Diamanti, E.; Debuisschert, T.; Villing, A.; Tualle-Brouri, R.; Grangier, P. Field test of a continuous-variable quantum key distribution prototype. New J. Phys. 2009, 11, 045023. [Google Scholar] [CrossRef]
Reference | Hardware Resource | Secret Key Rate (bit/pulse) | Abilitiy to Cope with Channel SNR Changing |
---|---|---|---|
Single-matrix rate-compatible reconciliation | a, single matrix | 0.0021 | low |
Multimatrix rate-compatible reconciliation [15] | 3a, multimatrix | 0.0098 | low |
Multimatrix corresponding to given SNRs [16] | 12a, multimatrix | 0.0089 | low |
Our proposed LDPC code | a, single matrix | 0.0116 | high |
Rate | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 | 0.9 | 1.0 1 |
---|---|---|---|---|---|---|---|---|
0.0001 | 0.0001 | 0.0007 | 0.0001 | 0.0002 | 0.0002 | 0.0004 | 0.0005 | |
0.0047 | ||||||||
0.5072 | ||||||||
0.1382 | 0.1268 | 0.1044 | 0.0761 | 0.0480 | 0.0367 | 0.0281 | 0.0089 | |
0.3498 | 0.3612 | 0.3830 | 0.4119 | 0.4399 | 0.4512 | 0.4596 | 0.4787 | |
1.3868 | 1.1547 | 1.0000 | 0.8771 | 0.7809 | 0.7001 | 0.6337 | 0.5774 | |
0.52 | 0.75 | 1.00 | 1.30 | 1.64 | 2.04 | 2.49 | 3.00 | |
C | 0.3072 | 0.4037 | 0.5000 | 0.6008 | 0.7003 | 0.8020 | 0.9016 | 1.0000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, X.; Niu, Q.; Zhao, T.; Guo, B. Rate-Compatible LDPC Codes for Continuous-Variable Quantum Key Distribution in Wide Range of SNRs Regime. Entropy 2022, 24, 1463. https://doi.org/10.3390/e24101463
Fan X, Niu Q, Zhao T, Guo B. Rate-Compatible LDPC Codes for Continuous-Variable Quantum Key Distribution in Wide Range of SNRs Regime. Entropy. 2022; 24(10):1463. https://doi.org/10.3390/e24101463
Chicago/Turabian StyleFan, Xiaodong, Quanhao Niu, Tao Zhao, and Banghong Guo. 2022. "Rate-Compatible LDPC Codes for Continuous-Variable Quantum Key Distribution in Wide Range of SNRs Regime" Entropy 24, no. 10: 1463. https://doi.org/10.3390/e24101463
APA StyleFan, X., Niu, Q., Zhao, T., & Guo, B. (2022). Rate-Compatible LDPC Codes for Continuous-Variable Quantum Key Distribution in Wide Range of SNRs Regime. Entropy, 24(10), 1463. https://doi.org/10.3390/e24101463