Point Cloud Geometry Compression Based on Multi-Layer Residual Structure
Abstract
:1. Introduction
- A multi-layer residual module is introduced to take advantage of the distortion in entropy coding by geometric subtraction, to constrain the accuracy of the sampling process at the encoder side;
- We employ sparse convolution to design a multi-layer residual module and progressive up-sampling reconstruction for efficient processing of sparse tensors at low complexity;
- We adopt a novel joint loss distortion by designing a multi-layer residual loss obtained by multi-layer residual operation to improve the quality of the reconstructed point cloud.
2. Related Work
2.1. Conventional PCGC
2.1.1. Tree Structure Based PCGC
2.1.2. Surface Approximation Based PCGC
2.1.3. Mapping-Based PCGC
2.2. Deep Learning Based PCGC
2.2.1. Voxel-Based PCGC
2.2.2. Point-Based PCGC
3. Method
3.1. Sparse Convolution
3.2. Multi-Layer Residual Architecture
3.3. Quantization and Entropy Coding Model
3.4. Joint Optimization Distortion
4. Experiments
4.1. Experimental Setup
4.2. Experiment Results
4.3. Ablation Study
4.4. Complexity Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schwarz, S.; Preda, M.; Baroncini, V.; Budagavi, M.; Cesar, P.; Chou, P.A.; Zakharchenko, V. Emerging mpeg standards for point cloud compression. IEEE J. Emerg. Sel. Top. Circuits Syst. 2019, 9, 133–148. [Google Scholar] [CrossRef] [Green Version]
- Bello, S.A.; Yu, S.; Wang, C.; Adam, J.M.; Li, J. Review: Deep Learning on 3D Point Clouds. Remote Sens. 2020, 12, 1729. [Google Scholar] [CrossRef]
- Minnen, D.; Ballé, J.; Toderici, G.D. Joint autoregressive and hierarchical priors for learned image compression. In Proceedings of the 2018 Conference on Neural Information Processing Systems, Montréal, QC, Canada, 3–8 December 2018; pp. 10771–10780. [Google Scholar]
- Lu, G.; Ouyang, W.; Xu, D.; Zhang, X.; Cai, C.; Gao, Z. DVC: An end-to-end deep video compression framework. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, CVPR, Long Beach, CA, USA, 15–20 June 2019; pp. 11006–11015. [Google Scholar]
- Wu, C.-Y.; Singhal, N.; Krähenbühl, P. Video compression through image interpolation. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 425–440. [Google Scholar] [CrossRef] [Green Version]
- Lu, G.; Zhang, X.; Ouyang, W.; Chen, L.; Gao, Z.; Xu, D. An end-to-end learning framework for video compression. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 43, 3292–3308. [Google Scholar] [CrossRef] [PubMed]
- Wiegand, T.; Sullivan, G.; Bjontegaard, G.; Luthra, A. Overview of the H.264/AVC video coding standard. IEEE Trans. Circuits Syst. Video Technol. 2003, 13, 560–576. [Google Scholar] [CrossRef] [Green Version]
- Garcia, D.C.; de Queiroz, R.L. Intra-frame context-based octree coding for pointcloud geometry. In Proceedings of the 2018 25th IEEE International Conference on Image Processing (ICIP), Athens, Greece, 7–10 October 2018; pp. 1807–1811. [Google Scholar]
- Schnabel, R.; Klein, R. Octree-based point cloud compression. In Symposium on Point-Based Graphics; The Eurographics Association: Eindhoven, The Netherlands, 2006. [Google Scholar]
- Huang, Y.; Peng, J.; Kuo, C.C.J.; Gopi, M. A generic scheme for progressive point cloud coding. IEEE Trans. Vis. Comput. Graph. 2008, 14, 440–453. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kammerl, J.; Blodow, N.; Rusu, R.B.; Gedikli, S.; Beetz, M.; Steinbach, E. Real-time compression of point cloud streams. In Proceedings of the 2012 IEEE International Conference on Robotics and Automation, Chengdu, China, 5–8 August 2012; pp. 778–785. [Google Scholar]
- Mekuria, R.; Blom, K.; Cesar, P. Design, Implementation, and Evaluation of a Point Cloud Codec for Tele-Immersive Video. IEEE Trans. Circuits Syst. Video Technol. 2016, 27, 828–842. [Google Scholar] [CrossRef] [Green Version]
- Kathariya, B.; Li, L.; Li, Z.; Alvarez, J.; Chen, J. Scalable point cloud geometry coding with binary tree embedded quadtree. In Proceedings of the 2018 IEEE International Conference on Multimedia and Expo (ICME), San Diego, CA, USA, 23–27 July 2018; pp. 1–6. [Google Scholar]
- Xu, Y.; Zhu, W.; Xu, Y.; Li, Z. Dynamic point cloud geometry compression via patch-wise polynomial fitting. In Proceedings of the 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Brighton, UK, 12–17 May 2019; pp. 2287–2291. [Google Scholar]
- Budagavi, M.; Faramarzi, E.; Ho, T.; Najaf-Zadeh, H.; Sinharoy, I. Samsung’s Response to CfP for Point Cloud Compression (Category 2); Document ISO/IEC: Macau, China, 2017. [Google Scholar]
- Merkle, P.; Smolic, A.; Muller, K.; Wiegand, T. Multi-view video plus depth representation and coding. In Proceedings of the 2007 IEEE International Conference on Image Processing(ICIP), San Antonio, TX, USA, 16 September–19 October 2007; Volume 1, pp. 201–204. [Google Scholar]
- Lien, J.-M.; Kurillo, G.; Bajcsy, R. Multi-camera tele-immersion system with real-time model driven data compression. Vis. Comput. 2009, 26, 3–15. [Google Scholar] [CrossRef]
- Ainala, K.; Mekuria, R.N.; Khathariya, B.; Li, Z.; Wang, Y.-K.; Joshi, R. An improved enhancement layer for octree based point cloud compression with plane projection approximation. In Proceedings of the Applications of Digital Image Processing XXXIX, San Diego, CA, USA, 29 August–1 September 2016; pp. 223–231. [Google Scholar]
- He, L.; Zhu, W.; Xu, Y. Best-effort projection based attribute compression for 3d point cloud. In Proceedings of the 2017 23rd Asia-Pacific Conference on Communications (APCC), Perth, Australia, 11–13 December 2017; pp. 1–6. [Google Scholar]
- Wang, J.; Ding, D.; Li, Z.; Ma, Z. Multiscale point cloud geometry compression. In Proceedings of the Data Compression Conference, Snowbird, UT, USA, 23–26 March 2021; pp. 73–82. [Google Scholar]
- Quach, M.; Valenzise, G.; Dufaux, F. Learning convolutional transforms for lossy point cloud geometry compression. In Proceedings of the 2019 IEEE International Conference on Image Processing (ICIP), Taipei, Taiwan, 22–25 September 2019; pp. 4320–4324. [Google Scholar]
- Huang, T.; Liu, Y. 3d point cloud geometry compression on deep learning. In Proceedings of the 27th ACM International Conference on Multimedia, Nice, France, 21–25 October 2019. [Google Scholar]
- Wang, J.; Zhu, H.; Liu, H.; Ma, Z. Lossy Point Cloud Geometry Compression via End-to-End Learning. IEEE Trans. Circuits Syst. Video Technol. 2021, 31, 4909–4923. [Google Scholar] [CrossRef]
- Charles, R.Q.; Su, H.; Kaichun, M.; Guibas, L.J. PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 77–85. [Google Scholar] [CrossRef]
- Choy, C.; Gwak, J.; Savarese, S. 4d spatio-temporal convnets: Minkowski convolutional neural networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 3075–3084. [Google Scholar]
- Tang, D.; Singh, S.; Chou, P.A.; Hane, C.; Dou, M.; Fanello, S.; Keskin, C. Deep Implicit Volume Compression. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR), Seattle, WA, USA, 13–19 June 2020; pp. 1290–1300. [Google Scholar]
- Huang, L.; Wang, S.; Wong, K.; Liu, J.; Urtasun, R. Octsqueeze: Octreestructured entropy model for lidar compression. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020; pp. 1310–1320. [Google Scholar]
- Que, Z.; Lu, G.; Xu, D. Voxelcontext-net: An octree based framework for point cloud compression. In Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 20–25 June 2021; pp. 6038–6047. [Google Scholar]
- Wen, X.; Wang, X.; Hou, J.; Ma, L.; Zhou, Y.; Jiang, J. Lossy geometry compression of 3d point cloud data via an adaptive octree-guided network. In Proceedings of the 2020 IEEE International Conference on Multimedia and Expo (ICME), London, UK, 6–10 July 2020; pp. 1–6. [Google Scholar]
- Zhu, W.; Xu, Y.; Ding, D.; Ma, Z.; Nilsson, M. Lossy Point Cloud Geometry Compression via Region-Wise Processing. IEEE Trans. Circuits Syst. Video Technol. 2021, 31, 4575–4589. [Google Scholar] [CrossRef]
- Gao, L.; Fan, T.; Wan, J.; Xu, Y.; Sun, J.; Ma, Z. Point cloud geometry compression via neural graph sampling. In Proceedings of the 2021 IEEE International Conference on Image Processing (ICIP), Anchorage, AK, USA, 19–22 September 2021; pp. 3373–3377. [Google Scholar]
- Szegedy, C.; Ioffe, S.; Vanhoucke, V.; Alemi, A.A. Inception-v4, Inception-ResNet and the impact of residual connections on learning. In Proceedings of the AAAI Conference on Artificial Intelligence, San Francisco, CA, USA, 4–9 February 2017; pp. 4278–4284. [Google Scholar]
- Balle, J.; Minnen, D.; Singh, S.; Hwang, S.J.; Johnston, N. Variational image compression with a scale hyperprior. arXiv 2018, arXiv:1802.01436. [Google Scholar]
- Chang, A.X.; Funkhouser, T.; Guibas, L.; Hanrahan, P.; Huang, Q.; Li, Z.; Yu, F. Shapenet: An information-rich 3d model repository. arXiv 2015, arXiv:1512.03012. [Google Scholar]
- Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
- Eugene d’Eon, E.; Harrison, B.; Myers, T.; Chou, P.A. 8i Voxelized Full Bodies—A Voxelized Point Cloud Dataset. ISO/IEC JTC1/SC29 Joint WG11/WG1 (MPEG/JPEG) Input Document m38673/M72012. May 2016. Available online: http://plenodb.jpeg.org/pc/8ilabs (accessed on 10 September 2022).
- Charles, L.; Cai, Q.; Sergio, O.E.; Philip, A.C. Microsoft Voxelized Upper Bodies—A voxelized Point Cloud Dataset, ISO/IEC JTC1/SC29 Joint WG11/WG1 (MPEG/JPEG) input document m38673/M72012. May 2016. Available online: https://plenodb.jpeg.org/pc/microsoft (accessed on 10 September 2022).
- Schwarz, S.; Chou, P.A.; Sinharoy, I. Common Test Conditions for Point Cloud Compression. ISO/IEC JTC1/SC29/WG11 N18474. 2018. Available online: https://ds.jpeg.org/documents/jpegpleno/wg1n88044-CTQ-JPEG_Pleno_PCC_Common_Test_Conditions_3_3.pdf (accessed on 10 September 2022).
- JPEG Pleno PCC, Jpeg Pleno Point Cloud Coding Common Test Conditions. JPEG (ISO/IEC JTC 1/SC 29/WG1). 2019. Available online: https://ds.jpeg.org/documents/jpegpleno/wg1n88044-CTQ-JPEG_Pleno_PCC_Common_Test_Conditions_3_4.pdf (accessed on 10 September 2022).
- MPEG, “Mpeg-pcc-tmc2”. Available online: https://github.com/MPEGGroup/mpeg-pcc-tmc2 (accessed on 10 September 2022).
- Tian, D.; Ochimizu, H.; Feng, C.; Cohen, R.; Vetro, A. Geometric distortion metrics for point cloud compression. In Proceedings of the 2017 IEEE International Conference on Image Processing (ICIP), Beijing, China, 17–20 September 2017; pp. 3460–3464. [Google Scholar]
- Mekuria, R.; Laserre, S.; Tulvan, C. Performance assessment of point cloud compression. In Proceedings of the 2017 IEEE Visual Communications and Image Processing (VCIP), St. Petersburg, FL, USA, 10–13 December 2017; pp. 1–4. [Google Scholar]
Point Cloud | Points | Precision | Frame | |
---|---|---|---|---|
Class A | Longdress | 857,966 | 10 | 1300 |
Soldier | 1,089,091 | 10 | 690 | |
Loot | 805,285 | 10 | 1200 | |
RedandBlack | 757,691 | 10 | 1550 | |
Class B | Andrew | 279,664 | 9 | 1 |
Phil | 370,798 | 9 | 1 | |
David | 330,791 | 9 | 1 | |
Sarah | 302,437 | 9 | 1 |
Point Cloud | D1 (p2point) | D2 (p2plane) | ||||||
---|---|---|---|---|---|---|---|---|
G-PCC (Octree) | G-PCC (Trisoup) | V-PCC | PCGCv2 | G-PCC (Octree) | G-PCC (Trisoup) | V-PCC | PCGCv2 | |
Longdress | −91.35% | −77.30% | −39.93% | −8.65% | −84.76% | −73.37% | −42.06% | −6.96% |
Soldier | −90.37% | −76.88% | −39.50% | −13.25% | −84.74% | −72.92% | −41.97% | −10.04% |
Loot | −91.22% | −81.65% | −39.67% | −13.34% | −85.19% | −73.44% | −42.13% | −10.23% |
RedandBlack | −90.36% | −81.21% | −39.61% | −12.75% | −85.03% | −73.28% | −42.04% | −9.37% |
Andrew | −92.14% | −87.38% | −60.94% | −14.80% | −83.17% | −87.79% | −53.61% | −11.30% |
Phil | −92.35% | −87.97% | −61.06% | −14.32% | −83.79% | −80.06% | −53.88% | −10.25% |
David | −92.41% | −86.73% | −61.55% | −13.79% | −82.93% | −82.45% | −54.17% | −10.17% |
Sarah | −93.16% | −86.66% | −60.39% | −14.64% | −83.61% | −86.36% | −53.65% | −11.40% |
Average | −91.67% | −83.22% | −50.33% | −13.19% | −84.40% | −76.71% | −45.94% | −9.97% |
Point Cloud | BD-PSNR | |||
---|---|---|---|---|
G-PCC (Octree) | G-PCC (Trisoup) | V-PCC | PCGCv2 | |
Longdress | 8.89 | 7.91 | 3.11 | 0.24 |
Soldier | 9.29 | 7.43 | 3.59 | 0.41 |
Loot | 9.66 | 7.31 | 3.52 | 0.40 |
RedandBlack | 8.41 | 6.94 | 3.22 | 0.35 |
Andrew | 9.74 | 11.15 | 3.95 | 0.33 |
Phil | 10.43 | 12.10 | 4.36 | 0.51 |
David | 9.54 | 10.57 | 3.14 | 0.40 |
Sarah | 8.94 | 9.78 | 3.36 | 0.37 |
Average | 9.36 | 9.13 | 3.53 | 0.38 |
Point Cloud | BD-Rate | |||
---|---|---|---|---|
Longdress | −4.32% | −6.96% | −6.76% | −4.55% |
Soldier | −7.41% | −10.04% | −8.69% | −7.28% |
Loot | −9.56% | −10.23% | −9.15% | −10.13% |
RedandBlack | −5.51% | −9.37% | −7.28% | −7.73% |
Average | −6.70% | −9.15% | −7.94% | −7.42% |
Point Cloud | BD-PSNR | |||
---|---|---|---|---|
Longdress | 0.15 | 0.24 | 0.21 | 0.19 |
Soldier | 0.23 | 0.41 | 0.37 | 0.36 |
Loot | 0.28 | 0.40 | 0.32 | 0.33 |
RedandBlack | 0.21 | 0.36 | 0.30 | 0.31 |
Average | 0.22 | 0.35 | 0.30 | 0.28 |
G-PCC (Octree) | G-PCC (Trisoup) | V-PCC | PCGCv2 | Ours | |
---|---|---|---|---|---|
Encoding | 1.60 | 8.16 | 103.41 | 1.56 | 1.59 |
Decoding | 0.60 | 6.58 | 0.67 | 5.42 | 5.44 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, J.; Wang, J.; Sun, L.; Wu, M.-E.; Zhu, Q. Point Cloud Geometry Compression Based on Multi-Layer Residual Structure. Entropy 2022, 24, 1677. https://doi.org/10.3390/e24111677
Yu J, Wang J, Sun L, Wu M-E, Zhu Q. Point Cloud Geometry Compression Based on Multi-Layer Residual Structure. Entropy. 2022; 24(11):1677. https://doi.org/10.3390/e24111677
Chicago/Turabian StyleYu, Jiawen, Jin Wang, Longhua Sun, Mu-En Wu, and Qing Zhu. 2022. "Point Cloud Geometry Compression Based on Multi-Layer Residual Structure" Entropy 24, no. 11: 1677. https://doi.org/10.3390/e24111677
APA StyleYu, J., Wang, J., Sun, L., Wu, M.-E., & Zhu, Q. (2022). Point Cloud Geometry Compression Based on Multi-Layer Residual Structure. Entropy, 24(11), 1677. https://doi.org/10.3390/e24111677