Towards Quantum Control with Advanced Quantum Computing: A Perspective
Abstract
:1. Introduction
2. Methodology
2.1. Data Encoding and State Preparation
2.2. Quantum Simulation
2.3. Measurement and Evaluation of the Quantum Function
2.4. Classical Optimization
3. Examples
3.1. Quantum Approximate Optimization Algorithm
3.2. Digital Adiabatic Quantum Computing
3.3. Quantum Optimal Control
4. Discussion and Outlooks
5. Concluding Remarks
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Feynman, R.P. Simulating physics with computers. In Feynman and Computation; CRC Press: Boca Raton, FL, USA, 2018; pp. 133–153. [Google Scholar]
- Preskill, J. Quantum computing in the NISQ era and beyond. Quantum 2018, 2, 79. [Google Scholar] [CrossRef]
- Bharti, K.; Cervera-Lierta, A.; Kyaw, T.H.; Haug, T.; Alperin-Lea, S.; Anand, A.; Degroote, M.; Heimonen, H.; Kottmann, J.S.; Menke, T.; et al. Noisy intermediate-scale quantum algorithms. Rev. Mod. Phys. 2022, 94, 015004. [Google Scholar] [CrossRef]
- Arute, F.; Arya, K.; Babbush, R.; Bacon, D.; Bardin, J.C.; Barends, R.; Biswas, R.; Boixo, S.; Brandao, F.; Martinis, J.M.; et al. Quantum supremacy using a programmable superconducting processor. Nature 2019, 574, 505–510. [Google Scholar] [CrossRef] [Green Version]
- Zhong, H.S.; Wang, H.; Deng, Y.H.; Chen, M.C.; Peng, L.C.; Luo, Y.H.; Qin, J.; Wu, D.; Ding, X.; Pan, J.W.; et al. “Quantum computational advantage using photons. Science 2020, 370, 1460–1463. [Google Scholar] [CrossRef]
- Guéry-Odelin, D.; Ruschhaupt, A.; Kiely, A.; Torrontegui, E.; Martínez-Garaot, S.; Muga, J.G. Shortcuts to adiabaticity: Concepts, methods, and applications. Rev. Mod. Phys. 2019, 91, 045001. [Google Scholar] [CrossRef]
- Chen, X.; Ruschhaupt, A.; Schmidt, S.; Del Campo, A.; Guéry-Odelin, D.; Muga, J.G. Fast optimal frictionless atom cooling in harmonic traps: Shortcut to adiabaticity. Phys. Rev. Lett. 2010, 104, 063002. [Google Scholar] [CrossRef] [PubMed]
- del Campo, A. Shortcuts to adiabaticity by counterdiabatic driving. Phys. Rev. Lett. 2013, 111, 100502. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Sun, K.; Chen, X. Shortcut to adiabatic control of soliton matter waves by tunable interaction. Sci. Rep. 2016, 6, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Lloyd, S. Universal quantum simulators. Science 1996, 273, 1073–1078. [Google Scholar] [CrossRef]
- Peruzzo, A.; McClean, J.; Shadbolt, P.; Yung, M.-H.; Zhou, X.-Q.; Love, P.J.; Aspuru-Guzik, A.; O’Brien, J.L. A variational eigenvalue solver on a photonic quantum processor. Nat. Commun. 2014, 5, 1–7. [Google Scholar] [CrossRef]
- Suzuki, M. Generalized Trotter’s formula and systematic approximants of exponential operators and inner derivations with applications to many-body problems. Commun. Math. Phys. 1976, 51, 183–190. [Google Scholar] [CrossRef]
- Dawson, C.M.; Nielsen, M.A. The solovay-kitaev algorithm. arXiv 2005, arXiv:Quant-ph/0505030. [Google Scholar] [CrossRef]
- Yuan, X.; Endo, S.; Zhao, Q.; Li, Y.; Benjamin, S.C. Benjamin. Theory of variational quantum simulation. Quantum 2019, 3, 191. [Google Scholar] [CrossRef]
- Cerezo, M.; Arrasmith, A.; Babbush, R.; Benjamin, S.C.; Endo, S.; Fujii, K.; McClean, J.R.; Mitarai, K.; Yuan, X.; Cincio, L.; et al. Variational quantum algorithms. Nature Reviews Physics 2021, 3, 625–644. [Google Scholar] [CrossRef]
- Benedetti, M.; Fiorentini, M.; Lubasch, M. Hardware-efficient variational quantum algorithms for time evolution. Phys. Rev. Research 2021, 3, 033083. [Google Scholar] [CrossRef]
- Mizuta, K.; Nakagawa, Y.O.; Mitarai, K.; Fujii, K. Local variational quantum compilation of a large-scale Hamiltonian dynamics. PRX Quantum 2022, 3, 040302. [Google Scholar] [CrossRef]
- Harry, B.; Cleve, R.; Watrous, J.; De Wolf, R. Quantum fingerprinting. Phys. Rev. Lett. 2001, 87, 167902. [Google Scholar]
- Spall, J.C. A Stochastic Approximation Technique for Generating Maximum Likelihood Parameter Estimates. In Proceedings of the 1987 American Control Conference, Minneapolis, MN, USA, 10–12 June 1987; pp. 1161–1167. [Google Scholar]
- Zhou, L.; Wang, S.T.; Choi, S.; Pichler, H.; Lukin, M.D. Quantum approximate optimization algorithm: Performance, mechanism, and implementation on near-term devices. Phys. Rev. X 2020, 10, 021067. [Google Scholar] [CrossRef]
- Farhi, E.; Goldstone, J.; Gutmann, S. A quantum approximate optimization algorithm. arXiv 2014, arXiv:1411.4028. [Google Scholar]
- Albash, T.; Lidar, D.A. Adiabatic quantum computation. Rev. Modern Phys. 2018, 90, 015002. [Google Scholar] [CrossRef] [Green Version]
- Yang, Z.-C.; Rahmani, A.; Shabani, A.; Neven, H.; Chamon, C. Optimizing variational quantum algorithms using pontryagin’s minimum principle. Phys. Rev. X 2017, 7, 021027. [Google Scholar] [CrossRef] [Green Version]
- Sun, D.; Chandarana, P.; Xin, Z.H.; Chen, X. Optimizing Counterdiabaticity by Variational Quantum Circuits. arXiv 2022, arXiv:2208.02087. [Google Scholar] [CrossRef] [PubMed]
- Barends, R.; Shabani, A.; Lamata, L.; Kelly, J.; Mezzacapo, A.; Heras, U.L.; Babbush, R.; Fowler, A.G.; Campbell, B.; Chen, Y.; et al. Digitized adiabatic quantum computing with a superconducting circuit. Nature 2016, 534, 222–226. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hegade, N.N.; Paul, K.; Ding, Y.; Sanz, M.; Albarrán-Arriagada, F.; Solano, E.; Chen, X. Shortcuts to adiabaticity in digitized adiabatic quantum computing. Phys. Rev. Applied 2021, 15, 024038. [Google Scholar] [CrossRef]
- Hegade, N.N.; Paul, K.; Albarrán-Arriagada, F.; Chen, X.; Solano, E. Digitized adiabatic quantum factorization. Phys. Rev. A 2021, 104, L050403. [Google Scholar] [CrossRef]
- Hegade, N.N.; Chandarana, P.; Paul, K.; Chen, X.; Albarrán-Arriagada, F.; Solano, E. Portfolio optimization with digitized-counterdiabatic quantum algorithms. arXiv 2021, arXiv:2112.08347. [Google Scholar]
- Benenti, G.; Strini, G. Quantum simulation of the single-particle Schrödinger equation. Am. J. Phys. 2008, 76, 657–662. [Google Scholar] [CrossRef] [Green Version]
- Huang, T.; Ding, Y.; Dupays, L.; Ban, Y.; Yung, M.H.; del Campo, A.; Chen, X. Time-Optimal Quantum Driving by Variational Circuit Learning. arXiv 2022, arXiv:2211.00405. [Google Scholar]
- Magann, A.B.; Grace, M.D.; Rabitz, H.A.; Sarovar, M. Digital quantum simulation of molecular dynamics and control. Phys. Rev. Res. 2021, 3, 023165. [Google Scholar] [CrossRef]
- Pesah, A.; Cerezo, M.; Wang, S.; Volkoff, T.; Sornborger, A.T.; Coles, P.J. Absence of barren plateaus in quantum convolutional neural networks. Phys. Rev. X 2021, 11, 041011. [Google Scholar] [CrossRef]
- Ding, Y.; Ban, Y.; Martín-Guerrero, J.D.; Solano, E.; Casanova, J.; Chen, X. Breaking adiabatic quantum control with deep learning. Phys. Rev. A 2021, 103, L040401. [Google Scholar] [CrossRef]
- Chinni, K.; Muñoz-Arias, M.H.; Deutsch, I.H.; Poggi, P.M. Trotter errors from dynamical structural instabilities of floquet maps in quantum simulation. PRX Quantum 2022, 3, 010351. [Google Scholar] [CrossRef]
- Heras, U.L.; Mezzacapo, A.; Lamata, L.; Filipp, S.; Wallraff, A.; Solano, E. Digital quantum simulation of spin systems in superconducting circuits. Phys. Rev. Lett. 2014, 112, 200501. [Google Scholar] [CrossRef] [Green Version]
- Barends, R.; Lamata, L.; Kelly, J.; García-Álvarez, L.; Fowler, A.G.; Megrant, A.; Jeffrey, E.; White, T.C.; Sank, D.; Mutus, J.Y.; et al. Digital quantum simulation of fermionic models with a superconducting circuit. Nat. Commun. 2015, 6, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- García-Álvarez, L.; Egusquiza, I.L.; Lamata, L.; Del Campo, A.; Sonner, J.; Solano, E. Digital quantum simulation of minimal AdS/CFT. Phys. Rev. Lett. 2017, 119, 040501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bravyi, S.B.; Kitaev, A.Y. About the Pauli exclusion principle. Z. Phys 1928, 47, 14–75. [Google Scholar]
- Bravyi, S.B.; Kitaev, A.Y. Fermionic quantum computation. Ann. Phys. 2002, 298, 210–226. [Google Scholar] [CrossRef] [Green Version]
- Liu, R.; Romero, S.V.; Oregi, I.; Osaba, E.; Villar-Rodriguez, E.; Ban, Y. Digital Quantum Simulation and Circuit Learning for the Generation of Coherent States. Entropy 2022, 24, 1529. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ding, Y.; Ban, Y.; Chen, X. Towards Quantum Control with Advanced Quantum Computing: A Perspective. Entropy 2022, 24, 1743. https://doi.org/10.3390/e24121743
Ding Y, Ban Y, Chen X. Towards Quantum Control with Advanced Quantum Computing: A Perspective. Entropy. 2022; 24(12):1743. https://doi.org/10.3390/e24121743
Chicago/Turabian StyleDing, Yongcheng, Yue Ban, and Xi Chen. 2022. "Towards Quantum Control with Advanced Quantum Computing: A Perspective" Entropy 24, no. 12: 1743. https://doi.org/10.3390/e24121743
APA StyleDing, Y., Ban, Y., & Chen, X. (2022). Towards Quantum Control with Advanced Quantum Computing: A Perspective. Entropy, 24(12), 1743. https://doi.org/10.3390/e24121743