Field Theory Approaches to Relativistic Hydrodynamics
Abstract
:1. Introduction
2. The Martin–Siggia–Rose Approach
2.1. From Stochastic to Quantum Fields
2.2. Mining the 2PIEA
2.3. The Lowest-Order Correlation
3. From Stochastic Kinetic Theory to Stochastic Hydrodynamics
3.1. Relativistic Kinetic Theory
3.2. The Moments Approach to Hydrodynamics
3.3. Stochastic Hydrodynamics
3.4. MSR Hydrodynamics
4. Perturbative Evaluation of the 2PIEA
4.1. “Classical” Propagators
4.2. Feynman Graphs
4.2.1. The Self Energy
4.2.2. The Noise Kernel
4.3. The Spectrum
5. Final Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. One Loop Feynman Graphs
Appendix A.1. Self Energy
Appendix A.2. Noise Kernel
Appendix A.3. Computing the Integrals
References
- Rezzolla, L.; Zanotti, O. Relativistic Hydrodynamics; Oxford University Press: Oxford, UK, 2013. [Google Scholar]
- Romatschke, P.; Romatschke, U. Relativistic Fluid Dynamics in and out Equilibrium—Ten Years of Progress in Theory and Numerical Simulations of Nuclear Collisions; Cambridge University Press: Cambridge, UK, 2019. [Google Scholar]
- Calzetta, E. Real relativistic fluids in heavy ion collisions. In Geometric, Algebraic and Topological Methods for Quantum Field Theory; Cano, L., Cardona, A., Ocampo, H., Lega, A.F.R., Eds.; World Scientific: Singapore, 2016; p. 155. [Google Scholar]
- Behtash, A.; Cruz-Camacho, C.N.; Martínez, M. Far-from-equilibrium attractors and nonlinear dynamical systems approach to the Gubser flow. Phys. Rev. D 2018, 97, 044041. [Google Scholar] [CrossRef] [Green Version]
- Romatschke, P. Relativistic Fluid Dynamics Far From Local Equilibrium. Phys. Rev. Lett. 2018, 120, 012301. [Google Scholar] [CrossRef] [Green Version]
- Strickland, M. The non-equilibrium attractor for kinetic theory in relaxation time approximation. J. High Energy Phys. 2018, 12, 128. [Google Scholar] [CrossRef] [Green Version]
- Strickland, M.; Noronha, J.; Denicol, G.S. Anisotropic nonequilibrium hydrodynamic attractor. Phys. Rev. D 2018, 97, 036020. [Google Scholar] [CrossRef] [Green Version]
- Chattopadhyay, C.; Heinz, U. Hydrodynamics from free-streaming to thermalization and back again. Phys. Lett. B 2020, 801, 135158. [Google Scholar] [CrossRef]
- Kurkela, A.; van der Schee, W.; Wiedemann, U.A.; Wu, B. Early- and Late-Time Behavior of Attractors in Heavy-Ion Collisions. Phys. Rev. Lett. 2020, 124, 102301. [Google Scholar] [CrossRef] [Green Version]
- Denicol, G.S.; Noronha, J. Connecting far-from-equilibrium hydrodynamics to resumed transport coefficients and attractors. Nucl. Phys. A 2021, 1005, 121748. [Google Scholar] [CrossRef]
- da Silva, T.N.; Chinellato, D.; Giannini, A.V.; Takahashi, J.; Ferreira, M.N.; Hippert, M.; Noronha, J.; Luzum, M. Pre-hydrodynamic evolution in large and small systems. arXiv 2022, arXiv:2211.10561. [Google Scholar]
- Baym, G.; Patil, S.P.; Pethick, C.J. Damping of gravitational waves by matter. Phys. Rev. D 2017, 96, 084033. [Google Scholar] [CrossRef] [Green Version]
- Goswami, G.; Chakravarty, G.K.; Mohanty, S.; Prasanna, A.R. Constraints on cosmological viscosity and self-interacting dark matter from gravitational wave observations. Phys. Rev. D 2017, 95, 103509. [Google Scholar] [CrossRef] [Green Version]
- Alford, M.G.; Bovard, L.; Hanauske, M.; Rezzolla, L.; Schwenzer, K. Viscous Dissipation and Heat Conduction in Binary Neutron-Star Mergers. Phys. Rev. Lett. 2018, 120, 041101. [Google Scholar] [CrossRef]
- Cao, S.; Qi, J.; Biesiada, M.; Liu, T.; Li, J.; Zhu, Z. Measuring the viscosity of dark matter with strongly lensed gravitational waves. Mon. Not. R. Astron. Soc. Lett. 2021, 502, L16–L20. [Google Scholar] [CrossRef]
- Hindmarsh, M.B.; Lüben, M.; Lumma, J.; Pauly, M. Phase transitions in the early universe. SciPost Phys. Lect. Notes 2021, 24. [Google Scholar] [CrossRef]
- Friedman, J.L.; Stergioulas, N. Rotating Relativistic Stars; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Mirón-Granese, N.; Calzetta, E. Primordial gravitational waves amplification from causal fluids. Phys. Rev. D 2018, 97, 023517. [Google Scholar] [CrossRef] [Green Version]
- Mirón-Granese, N. Relativistic viscous effects on the primordial gravitational waves spectrum. J. Cosmol. Astropart. Phys. 2021, 2021, 008. [Google Scholar] [CrossRef]
- Khachatryan, V. Modified Kolmogorov Wave Turbulence in QCD matched onto Bottom-up Thermalization. Nucl. Phys. A 2008, 810, 109. [Google Scholar] [CrossRef]
- Floerchinger, S.; Wiedemann, U.A. Fluctuations around Bjorken flow and the onset of turbulent phenomena. J. High Energy Phys. 2011, 11, 100. [Google Scholar] [CrossRef] [Green Version]
- Carrington, M.E.; Rheban, A. Perturbative and Nonperturbative Kolmogorov Turbulence in a Gluon Plasma. Eur. Phys. J. 2011, 71, 1787. [Google Scholar] [CrossRef]
- Fukushima, K. Turbulent pattern formation and diffusion in the early-time dynamics in the relativistic heavy-ion collision. Phys. Rev. C 2014, 89, 024907. [Google Scholar] [CrossRef] [Green Version]
- York, M.C.A.; Kurkela, A.; Lu, E.; Moore, G.D. UV Cascade in Classical Yang-Mills via Kinetic Theory. Phys. Rev. D 2014, 89, 074036. [Google Scholar] [CrossRef] [Green Version]
- Eyink, G.L.; Drivas, T.D. Cascades and Dissipative Anomalies in Relativistic Fluid Turbulence. Phys. Rev. X 2018, 8, 011023. [Google Scholar] [CrossRef]
- Calzetta, E. Fully developed relativistic turbulence. Phys. Rev. D 2021, 103, 056018. [Google Scholar] [CrossRef]
- Martin, P.C.; Siggia, E.D.; Rose, H.A. Statistical Dynamics of Classical Systems. Phys. Rev. A 1973, 8, 423. [Google Scholar] [CrossRef]
- Kamenev, A. Field Theory of Non-Equilibrium Systems; Cambridge University Press: Cambridge, UK, 2011. [Google Scholar]
- Eyink, G.L. Turbulence Noise. J. Stat. Phys. 1996, 83, 955. [Google Scholar] [CrossRef]
- Zanella, J.; Calzetta, E. Renormalization group and nonequilibrium action in stochastic field theory. Phys. Rev. E 2002, 66, 036134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kovtun, P. Lectures on hydrodynamic fluctuations in relativistic theories. J. Phys. A 2012, 45, 473001. [Google Scholar] [CrossRef]
- Kovtun, P.; Moore, G.D.; Romatschke, P. Towards an effective action for relativistic dissipative hydrodynamics. J. High Energy Phys. 2014, 7, 123. [Google Scholar] [CrossRef] [Green Version]
- Harder, M.; Kovtun, P.; Ritz, A. On thermal fluctuations and the generating functional in relativistic hydrodynamics. J. High Energy Phys. 2015, 7, 25. [Google Scholar] [CrossRef] [Green Version]
- Haehl, F.M.; Loganayagam, R.; Rangamani, M. Adiabatic hydrodynamics: The eightfold way to dissipation. J. High Energy Phys. 2015, 5, 60. [Google Scholar] [CrossRef] [Green Version]
- Montenegro, D.; Torrieri, G. Lagrangian formulation of relativistic Israel-Stewart hydrodynamics. Phys. Rev. D 2016, 94, 65042. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Liu, P.; Wu, J. Weyl corrections to diffusion and chaos in holography. J. High Energy Phys. 2018, 4, 115. [Google Scholar] [CrossRef]
- Haehl, F.M.; Loganayagam, R.; Rangamani, M. Effective action for relativistic hydrodynamics: Fluctuations, dissipation, and entropy inflow. J. High Energy Phys. 2018, 10, 194. [Google Scholar] [CrossRef] [Green Version]
- Montenegro, D.; Torrieri, G. Linear response theory and effective action of relativistic hydrodynamics with spin. Phys. Rev. D 2020, 102, 036007. [Google Scholar] [CrossRef]
- Calzetta, E.; Hu, B.-L. Nonequilibrium Quantum Field Theory; Cambridge University Press: Cambridge, UK, 2008. [Google Scholar]
- Baier, R.; Romatschke, P.; Son, D.T.; Starinets, A.O.; Stephanov, M.A. Relativistic viscous hydrodynamics, conformal invariance, and holography. J. High Energy Phys. 2008, 4, 100. [Google Scholar] [CrossRef]
- Israel, W. The relativistic Boltzmann equation. In General Relativity: Papers in Honour of J. L. Synge; O’Raifeartaigh, L., Ed.; Clarendon Press: Oxford, UK, 1972; p. 201. [Google Scholar]
- Anderson, J.L.; Witting, H.R. A Relativistic Relaxation-Time Model for the Boltzmann Equation. Physica 1974, 74, 466–488. [Google Scholar] [CrossRef]
- Anderson, J.L.; Witting, H.R. Relativistic Quantum Transport Coefficients. Physica 1974, 74, 489–495. [Google Scholar] [CrossRef]
- Takamoto, M.; Inutsuka, S.I. The relativistic kinetic dispersion relation: Comparison of the relativistic Bhatnagar–Gross–Krook model and Grad’s 14-moment expansion. Physica A 2010, 389, 4580–4603. [Google Scholar] [CrossRef] [Green Version]
- Calzetta, E.; Peralta-Ramos, J. Linking the hydrodynamic and kinetic description of a dissipative relativistic conformal theory. Phys. Rev. D 2010, 82, 106003. [Google Scholar] [CrossRef] [Green Version]
- Rocha, G.S.; Denicol, G.S.; Noronha, J. Novel Relaxation Time Approximation to the Relativistic Boltzmann Equation. Phys. Rev. Lett. 2021, 127, 042301. [Google Scholar] [CrossRef]
- Denicol, G.S.; Niemi, H.; Molnár, E.; Rischke, D.H. Derivation of transient relativistic fluid dynamics from the Boltzmann equation. Phys. Rev. D 2012, 85, 114047, Erratum in Phys. Rev. D 2015, 91, 039902. [Google Scholar] [CrossRef] [Green Version]
- Ambrus, V.E.; Molnàr, E.; Rischke, D.H. Transport coefficients of second-order relativistic fluid dynamics in the relaxation-time approximation. arXiv 2022, arXiv:2207.05670v2. [Google Scholar] [CrossRef]
- Calzetta, E.; Kandus, A. A hydrodynamic approach to the study of anisotropic instabilities in dissipative relativistic plasmas. Int. J. Mod. Phys. 2016, 31, 1650194. [Google Scholar] [CrossRef] [Green Version]
- Mirón-Granese, N.; Calzetta, E.; Kandus, A. Primordial Weibel instability. J. Cosmol. Astropart. Phys. 2022, 2022, 028. [Google Scholar] [CrossRef]
- Hiscock, W.A.; Lindblom, L. Linear plane waves in dissipative relativistic fluids. Phys. Rev. D 1987, 35, 3723. [Google Scholar] [CrossRef]
- Natsuume, M.; Okamura, T. Causal hydrodynamics of gauge theory plasmas from AdS/CFT duality. Phys. Rev. D 2008, 77, 066014. [Google Scholar] [CrossRef] [Green Version]
- Perna, G.; Calzetta, E. Linearized dispersion relations in viscous relativistic hydrodynamics. Phys. Rev. D 2021, 104, 096005. [Google Scholar] [CrossRef]
- Calzetta, E. Steady asymptotic equilibria in conformal relativistic fluids. Phys. Rev. D 2022, 105, 036013. [Google Scholar] [CrossRef]
- Brito, C.V.; Denicol, G.S. Linear causality and stability of third order relativistic dissipative fluid dynamics. Phys. Rev. D 2022, 105, 096026. [Google Scholar] [CrossRef]
- Landau, L.D.; Lifshitz, E.M. Hydrodynamic Fluctuations. Zh. Eksp. Teor. Fiz. 1957, 32, 618, Reprinted Sov. Phys. JETP 1957, 5, 512. [Google Scholar]
- Landau, L.D.; Lifshitz, E.M. Statistical Mechanics, Part II; Pergamon Press: Oxford, UK, 1959. [Google Scholar]
- Fox, R.; Uhlembeck, G. Contributions to Non-Equilibrium Thermodynamics. I. Theory of Hydrodynamical Fluctuations. Phys. Fluids 1970, 13, 1893–1902. [Google Scholar] [CrossRef]
- Fox, R.; Uhlembeck, G. Contributions to Nonequilibrium Thermodynamics. II. Fluctuation Theory for the Boltzmann Equation. Phys. Fluids 1970, 13, 2881–2890. [Google Scholar] [CrossRef]
- E, E.C.; Hu, B.L. Stochastic dynamics of correlations in quantum field theory: From the Schwinger– Dyson to Boltzmann–Langevin equation. Phys. Rev. D 1999, 61, 025012. [Google Scholar]
- Calzetta, E. Fourth-order full quantum correlations from a Langevin–Schwinger–Dyson equation. J. Phys. A Math. Theor. 2009, 42, 265401. [Google Scholar] [CrossRef]
- Zinn-Justin, J. Quantum Field Theory and Critical Phenomena, 3rd ed.; Clarendon Press: Oxford, UK, 1996. [Google Scholar]
- Zubarev, D. Nonequilibrium Statistical Thermodynamics; Plenum: New York, NY, USA, 1974. [Google Scholar]
- Harutyunyan, A.; Sedrakian, A.; Rischke, D.H. Relativistic Dissipative Fluid Dynamics from the Non-Equilibrium Statistical Operator. Particles 2018, 1, 155–165. [Google Scholar] [CrossRef] [Green Version]
- Becattini, F.; Buzzegoli, M.; Grossi, E. Reworking the Zubarev’s approach to non-equilibrium quantum statistical mechanics. Particles 2019, 2, 197–207. [Google Scholar] [CrossRef] [Green Version]
- Torrieri, G. Fluctuating relativistic hydrodynamics from Crooks theorem. J. High Energy Phys. 2021, 2, 175. [Google Scholar] [CrossRef]
- Wyld, H.W., Jr. Formulation of the Theory of Turbulence in an Incompressible Fluid. Ann. Phys. 1961, 14, 143–165. [Google Scholar] [CrossRef]
- Wetterich, C. Exact evolution equation for the effective potential. Phys. Lett. B 1993, 301, 90–94. [Google Scholar] [CrossRef] [Green Version]
- Lamagna, F.; Calzetta, E. A functional renormalization method for wave propagation in random media. J. Phys. A Math. Theor. 2017, 50, 315102. [Google Scholar] [CrossRef] [Green Version]
- Koenigstein, A.; Steil, M.J.; Wink, N.; Grossi, E.; Braun, J.; Buballa, M.; Rischke, D.H. Numerical fluid dynamics for FRG flow equations: Zero-dimensional QFTs as numerical test cases. I. The O(N) model. Phys. Rev. D 2022, 106, 065012. [Google Scholar] [CrossRef]
- Torrieri, G. The equivalence principle and inertial-gravitational decoherence. arXiv 2022, arXiv:2210.08586. [Google Scholar]
- Romatschke, P. Retarded correlators in kinetic theory: Branch cuts, poles and hydrodynamic onset transitions. Eur. Phys. J. C 2016, 76, 352. [Google Scholar] [CrossRef] [Green Version]
- Kurkela, A.; Wiedemann, U.A. Analytic structure of nonhydrodynamic modes in kinetic theory. Eur. Phys. J. C 2019, 79, 776. [Google Scholar] [CrossRef] [Green Version]
- Dudyński, M. Spectral Properties of the Linearized Boltzmann Operator in Lp for 1 ≤ p ≤ ∞. J. Stat. Phys. 2013, 153, 1084. [Google Scholar] [CrossRef]
- Luo, L.; Yu, H. Spectrum Analysis of the Linearized Relativistic Landau Equation. J. Stat. Phys. 2016, 163, 914. [Google Scholar] [CrossRef]
- Denicol, G.S.; Noronha, J. Exact results for the Boltzmann collision operator in λϕ4 theory. arXiv 2022, arXiv:2209.10370. [Google Scholar]
- Jaiswal, A.; Ryblewski, R.; Strickland, M. Transport coefficients for bulk viscous evolution in the relaxation-time approximation. Phys. Rev. C 2014, 90, 044908. [Google Scholar] [CrossRef] [Green Version]
- Jaiswal, A.; Friman, B.; Redlich, K. Relativistic second-order dissipative hydrodynamics at finite chemical potential. Phys. Lett. B 2015, 751, 548–552. [Google Scholar] [CrossRef]
- Chattopadhyay, C.; Jaiswal, A.; Pal, S.; Ryblewski, R. Relativistic third-order viscous corrections to the entropy four-current from kinetic theory. Phys. Rev. C 2015, 91, 024917. [Google Scholar] [CrossRef] [Green Version]
- Bhadury, S.; Florkowski, W.; Jaiswal, A.; Kumar, A.; Ryblewski, R. Dissipative spin dynamics in relativistic matter. Phys. Rev. D 2021, 103, 014030. [Google Scholar] [CrossRef]
- Marle, C. Modèle cinétique pour l’établissement des lois de la conduction de la chaleur et de la viscosité en théorie de la relativité. C. R. Acad. Sci. Paris 1965, 260, 6539. [Google Scholar]
- Dash, D.; Bhadury, S.; Jaiswal, S.; Jaiswal, A. Extended relaxation time approximation and relativistic dissipative hydrodynamics. Phys. Lett. B 2022, 831, 137202. [Google Scholar] [CrossRef]
- Florkowski, W.; Ryblewski, R. Separation of elastic and inelastic processes in the relaxation time approximation for collision integral. Phys. Rev. C 2016, 93, 064903. [Google Scholar] [CrossRef] [Green Version]
- Cantarutti, L.; Calzetta, E. Dissipative-type theories for Bjorken and Gubser flows. Int. J. Mod. Phys. 2020, 35, 2050074. [Google Scholar] [CrossRef]
- Mirón-Granese, N.; Calzetta, E.; Kandus, A. Nonlinear fluctuations in relativistic causal fluids. J. High Energy Phys. 2020, 7, 64. [Google Scholar] [CrossRef]
- Liu, I.-S.; Müller, I.; Ruggeri, T. Relativistic Thermodynamics of Gases. Ann. Phys. 1986, 169, 191. [Google Scholar] [CrossRef]
- Geroch, R.; Lindblom, L. Dissipative relativistic fluid theories of divergence type. Phys. Rev. D 1990, 41, 1855. [Google Scholar] [CrossRef]
- Geroch, R.; Lindblom, L. Causal theories of dissipative relativistic fluids. Ann. Phys. 1991, 207, 394–416. [Google Scholar] [CrossRef]
- Reula, O.A.; Nagy, G.B. On the causality of a dilute gas as a dissipative relativistic fluid theory of divergence type. J. Phys. A 1995, 28, 6943. [Google Scholar]
- Reula, O.A.; Nagy, G.B. A causal statistical family of dissipative divergence-type fluids. J. Phys. A Math. Gen. 1997, 30, 1695. [Google Scholar] [CrossRef]
- Lehner, L.; Reula, O.A.; Rubio, M.E. A Hyperbolic Theory of Relativistic Conformal Dissipative Fluids. Phys. Rev. D 2018, 97, 024013. [Google Scholar] [CrossRef] [Green Version]
- Aguilar, M.; Calzetta, E. Causal relativistic hydrodynamics of conformal Fermi-Dirac gases. Phys. Rev. D 2017, 95, 076022. [Google Scholar] [CrossRef] [Green Version]
- Gavassino, L.; Antonelli, M. Relativistic Liquids: GENERIC or EIT? arXiv 2022, arXiv:2209.12865v1. [Google Scholar]
- Gavassino, L.; Antonelli, M.; Haskell, B. Thermodynamic stability implies causality. Phys. Rev. Lett. 2022, 128, 010606. [Google Scholar] [CrossRef]
- Calzetta, E. Relativistic fluctuating hydrodynamics. Class. Quant. Grav. 1998, 15, 653. [Google Scholar] [CrossRef] [Green Version]
- Almaalol, D.; Strickland, M. Anisotropic hydrodynamics with a scalar collisional kernel. Phys. Rev. C 2018, 97, 044911. [Google Scholar] [CrossRef] [Green Version]
- Mullins, N.; Denicol, G.; Noronha, J. Far-from-equilibrium kinetic dynamics of λϕ4 theory in an expanding universe. Phys. Rev. D 2022, 106, 056024. [Google Scholar] [CrossRef]
- Arnold, P. Symmetric path integrals for stochastic equations with multiplicative noise. Phys. Rev. E 2000, 61, 6099. [Google Scholar] [CrossRef]
- Arenas, Z.G.; Barci, D.G. Functional integral approach for multiplicative stochastic processes. Phys. Rev. E 2010, 81, 051113. [Google Scholar] [CrossRef] [Green Version]
- Kovtun, P.; Moore, G.D.; Romatschke, P. The stickiness of sound: An absolute lower limit on viscosity and the breakdown of second order relativistic hydrodynamics. Phys. Rev. D 2011, 84, 025006. [Google Scholar] [CrossRef] [Green Version]
- Peralta-Ramos, J.; Calzetta, E. Shear viscosity from thermal fluctuations in relativistic conformal fluid dynamics. J. High Energy Phys. 2012, 2, 85. [Google Scholar] [CrossRef]
- Ramond, P. Field Theory: A Modern Primer, 2nd ed.; Westview Press: Boulder, CO, USA, 2001. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mirón Granese, N.; Kandus, A.; Calzetta, E. Field Theory Approaches to Relativistic Hydrodynamics. Entropy 2022, 24, 1790. https://doi.org/10.3390/e24121790
Mirón Granese N, Kandus A, Calzetta E. Field Theory Approaches to Relativistic Hydrodynamics. Entropy. 2022; 24(12):1790. https://doi.org/10.3390/e24121790
Chicago/Turabian StyleMirón Granese, Nahuel, Alejandra Kandus, and Esteban Calzetta. 2022. "Field Theory Approaches to Relativistic Hydrodynamics" Entropy 24, no. 12: 1790. https://doi.org/10.3390/e24121790
APA StyleMirón Granese, N., Kandus, A., & Calzetta, E. (2022). Field Theory Approaches to Relativistic Hydrodynamics. Entropy, 24(12), 1790. https://doi.org/10.3390/e24121790