Next Article in Journal
Facial Expression Recognition: One Attention-Modulated Contextual Spatial Information Network
Previous Article in Journal
Oleuropein as a Potent Compound against Neurological Complications Linked with COVID-19: A Computational Biology Approach
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Power-Modified Kies-Exponential Distribution: Properties, Classical and Bayesian Inference with an Application to Engineering Data

1
Department of Statistics, Mathematics and Insurance, Benha University, Benha 13511, Egypt
2
Department of Mathematics, Faculty of Science, Tanta University, Tanta 31527, Egypt
3
Department of Mathematics & Statistics, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
4
Departamento de Estatística, Universidade Federal de Pernambuco, Recife 50710-165, Brazil
5
Mathematics Department, Faculty of Science, Helwan University, Helwan 11795, Egypt
*
Author to whom correspondence should be addressed.
Entropy 2022, 24(7), 883; https://doi.org/10.3390/e24070883
Submission received: 23 May 2022 / Revised: 17 June 2022 / Accepted: 22 June 2022 / Published: 27 June 2022
(This article belongs to the Section Information Theory, Probability and Statistics)

Abstract

:
We introduce here a new distribution called the power-modified Kies-exponential (PMKE) distribution and derive some of its mathematical properties. Its hazard function can be bathtub-shaped, increasing, or decreasing. Its parameters are estimated by seven classical methods. Further, Bayesian estimation, under square error, general entropy, and Linex loss functions are adopted to estimate the parameters. Simulation results are provided to investigate the behavior of these estimators. The estimation methods are sorted, based on partial and overall ranks, to determine the best estimation approach for the model parameters. The proposed distribution can be used to model a real-life turbocharger dataset, as compared with 24 extensions of the exponential distribution.

1. Introduction

Exponential distribution is analytically tractable and, due to its lack of memory, is considered one of the important classical distributions. However, due to its constant hazard rate and unimodal density function, it has limited applications and cannot be adopted to a model phenomenon showing decreasing, increasing, or bathtub-shaped hazard rates. Hence, the statistical literature contains several extensions of the exponential distribution to increase its applicability and flexibility. One example is the modified Kies-exponential (MKE) introduced by Al-Babtain et al. [1] with the cumulative distribution function (CDF) and probability density function (PDF) (for t > 0 )
G ( t ) = 1 exp exp ( λ t ) 1 α , α , λ > 0 , g ( t ) = α λ exp ( λ α t ) 1 exp ( λ t ) α 1 exp exp ( λ t ) 1 α ,
where α is a shape parameter, and λ is a scale parameter.
The hazard rate function (HRF) of the MKE distribution can be decreasing, increasing, or bathtub-shaped. Interestingly, the two-parameter MKE model has a bathtub-shaped hazard function, whereas most distributions with this bathtub shape have problems related to algebraic complexity, an increasing number of parameters, and/or estimation problems. Hence, it can be adopted to a model phenomenon showing decreasing, increasing, or bathtub-shaped hazard rates and thus becomes more flexible than the exponential distribution for analyzing real-life data.
We propose a flexible extension of the MKE distribution named the power-modified Kies-exponential (PMKE) distribution, which provides more accuracy and flexibility for fitting real-life data. This distribution is generated based on the power transformation (P-T). The P-T has attracted attention over the years for its mathematical properties, which sometimes lead to surprising physical consequences, and for its appearance in a diverse range of natural and man-made phenomena. In fact, the generated power distributions have applications to a broad variety of different branches of human endeavor, including physics, earth sciences, biology, ecology, paleontology, computer and information sciences, engineering, and the social sciences.
The P-T of two random variables X and T, say, X = T 1 β , has been used for generating power distributions. Examples include power Lindley [2], power half-logistic [3], power Lomax [4], inverse-power Lindley [5], power binomial-exponential [6], power log-Dagum [7], power length-biased Suja [8], inverse-power logistic-exponential [9], and inverse-power Burr–Hatke [10].
The PMKE distribution has a very flexible density that can be symmetric, negatively skewed, positively skewed, or reverse-J-shaped, and it can allow for greater flexibility in the tails. It is also capable of modeling monotonically increasing, monotonically decreasing, and bathtub-shaped hazard rates. Furthermore, the CDF of this distribution has a closed form expression, which makes it ideal for applications in various fields such as engineering, reliability, life testing, survival analysis, and biomedical studies. A real data application from engineering science shows that the PMKE distribution is very competitive, with 19 extensions of the exponential distribution, including beta exponential (BE) [11], Marshall-Olkin logistic-exponential (MOLE) [12], exponentiated-exponential (ExE) [13], Harris extended-exponential (HEE) [14], Marshall-Olkin exponential (MOE) [15], and inverse-Pareto exponential distributions.
The rest of this paper is organized as follows. In Section 2, we introduce the PMKE distribution. In Section 3, we derive some of its mathematical properties. Actuarial measures of the new distribution are discussed in Section 4. Some classical methods of estimation along with detailed simulation results are reported in Section 5. Section 6 is devoted to Bayesian estimation of the parameters under different loss functions. A real-life data application is presented in Section 7. Finally, some conclusions and major findings are addressed in Section 8.

2. The PMKE Distribution

By applying the PT transform X = T 1 β to (1), we obtain the CDF of the PMKE distribution (for x > 0 ):
F ( x ) = 1 exp exp ( λ x β ) 1 α , α , λ , β > 0 ,
where α and β are shape parameters, and λ is a scale parameter.
Henceforth, we denote by X PMKE ( α , λ , β ) a random variable with CDF (2). The PDF and HRF of X are
f ( x ) = α λ β x β 1 exp ( λ α x β ) 1 exp ( λ x β ) α 1 exp exp ( λ x β ) 1 α
and
h ( x ) = α λ β x β 1 exp ( λ x β ) 1 exp ( λ x β ) α 1 ,
respectively.
Plots of the PDF and HRF of X are displayed in Figure 1 and Figure 2, respectively. These plots reveal that the density of X can be left-skewed, reverse-J-shaped, or right-skewed, and its HRF can be bathtub-shaped, increasing, or decreasing.

3. Mathematical Properties

3.1. Quantile Function

The quantile function (QF) of X follows by inverting the CDF (2) as
Q ( p ) = log ( log ( 1 p ) ) 1 / α + 1 λ 1 / β , 0 < p < 1 .

3.2. Linear Representation

An expansion for Equation (2) can be expressed as
F ( x ) = 1 k = 0 ( 1 ) k k ! exp ( λ x β ) 1 k α = 1 k = 0 ( 1 ) k k ! exp ( k λ α x β ) 1 exp ( λ x β ) k α = 1 k = 0 m = 0 ( 1 ) k + m ( k α ) m k ! m ! exp [ λ ( m k α ) x β ] ,
where ( k α ) m = ( k α ) ( k α 1 ) ( k α m + 1 ) . By differentiating the last equation, we have
f ( x ) = k , m = 0 ϕ k , m g λ ( m k α ) β ( x ) ,
where g λ ( m k α ) β ( x ) is the Weibull density with scale parameter λ ( m k α ) , shape parameter β , and ϕ k , m = ( 1 ) k + m + 1 ( k α ) m / ( k ! m ! ) .

3.3. Moments

The rth ordinary moment of X can be expressed in terms of the complete gamma function
μ r = E ( X r ) = 0 x r f ( x ) d x = k , m = 0 ϕ k , m λ ( m k α ) r β Γ β + r β .
We obtain the first four ordinary moments of X by setting r = 1 , 2 , 3 , and 4. The central moments and cumulants of X are easily obtained from these ordinary moments.
The sth incomplete moment of X takes the form
α s ( t ) = 0 t x s f ( x ) d x = k , m = 0 ϕ k , m λ ( m k α ) s β γ β + s β , λ ( m k α ) t β ,
where γ β + s β , λ ( m k α ) t β denotes the lower incomplete gamma function.
The important application of the first incomplete moment is related to the Bonferroni and Lorenz curves defined by L ( p ) = α 1 ( x p ) / μ 1 and B ( p ) = α 1 ( x p ) / ( p μ 1 ) , respectively, where x p = Q ( p ) can be evaluated numerically by Equation (4) for a given probability p. These curves are very useful in economics, demography, insurance, engineering, and medicine. Another application of the first incomplete moment refers to the mean residual life (MRL) and the mean waiting time given by m 1 ( t ) = [ 1 α 1 ( t ) ] / S ( t ) t and M 1 ( t ) = t α 1 ( t ) / F ( t ) , respectively.

4. Actuarial Measures

We discuss the theoretical and computational aspects of some important risk measures, which play a crucial role in portfolio optimization under uncertainty.
The VaR of a random variable is the qth quantile of its CDF given by V a R q = Q ( q ) (see Artzner [16]). Therefore, the VaR of X can be obtained from (4).
The TVaR is used to quantify the expected value of the loss given that an event outside a given probability level has occurred. The TVaR of X is given by
TVaR q = 1 ( 1 q ) VaR q x f ( x ) d x ,
which follows as
TVaR q = 1 1 q k , m = 0 ϕ k , m VaR q x g λ ( m α k ) β ( x ) = 1 1 q k , m = 0 ϕ k , m λ ( m k α ) VaR q β + 1 E 1 β λ ( m α k ) VaR q β ,
where E p ( z ) = 1 t p exp ( t z ) d t is the exponential integral.
The expected shortfall (ES) is a risk measure sensitive to the shape of the tail of the distribution of returns on a portfolio, namely,
ES q ( x ) = 1 q 0 q V a R t d t .
Some numerical values of VaR, TVaR, and ES for four distributions are reported in Table 1. The values of these measures are obtained for four distributions at the same parameter values to investigate the tails of these models. The values of VaR, TVaR, and ES for the PMKE distribution are greater than those for the MKE distribution and the other two models, thus showing that the proposed distribution has a heavier tail than its competing models. Hence, the additional parameter β provides greater flexibility for the PMKE distribution over the MKE model.

5. Methods of Estimation

In this section, we discuss seven methods to estimate the parameters θ = ( α , λ , β ) of the PMKE distribution and compare them by means of Monte Carlo simulations.
The AdequacyModel package for the R statistical computing environment provides a comprehensive and efficient general meta-heuristic optimization method for maximizing or minimizing an arbitrary objective function, which can be used to find the estimates of θ in the following methods. The data is accessed on 9 May 2021 and its details are available at https://rdrr.io/cran/AdequacyModel/.

5.1. Methods

Let x 1 , , x n be a random sample of size n from the PDF (3). The log-likelihood function for θ reduces to
= i = 1 n exp ( λ x i β ) 1 α + ( α 1 ) i = 1 n log ( e 1 ) ˘ x i fi + λ i = 1 n x i β + ( β 1 ) i = 1 n log ( x i ) + n log ( α β λ ) .
The maximum likelihood estimate (MLE) of θ can be obtained by maximizing .
Let x 1 : n , , x n : n be the corresponding order statistics. The ordinary least-squares estimates (OLSEs) of the parameters are determined by minimizing the function
O = i = 1 n F ( x i : n ) i n + 1 2 = i = 1 n 1 exp exp ( λ x i : n β ) 1 α i n + 1 2 .
Alternatively, the weighted least-squares estimators (WLSEs) can be calculated by minimizing
W = i = 1 n ( n + 1 ) 2 ( n + 2 ) i ( n i + 1 ) 1 exp exp λ x i : n β 1 α i n + 1 2 .
Further, the Anderson–Darling estimates (ADEs) are obtained by minimizing the function
A = n 1 n i = 1 n ( 2 i 1 ) log F ( x i : n ) + log S ( x i : n ) ,
whereas the Cramér–von Mises estimates (CVMEs) are determined by minimizing
C V = 1 12 n + i = 1 n F ( x i : n ) 2 i 1 2 n 2 = 1 12 n + i = 1 n 1 exp exp ( λ x i : n β ) 1 α 2 i 1 2 n 2 .
The maximum product of spacing estimates (MPSEs) are based on the uniform spacing
D i = F ( x i ) F ( x i 1 ) ,
where F ( x 0 ) = 0 , F ( x n + 1 = 1 ) , i = 1 n + 1 D i = 1 , and they follow by maximizing
G = 1 n + 1 i = 1 n + 1 log ( D i ) .
Finally, the percentile estimates (PCEs) follow by minimizing
P C E = i = 1 n x i : n Q ( p i ) 2 = i = 1 n x i : n log ( log ( 1 p i ) ) 1 / α + 1 λ 1 / β 2 ,
where p i = i / ( n + 1 ) is an estimate of F ( x i : n ) .

5.2. Monte Carlo Simulations

We explore here the performance of the aforementioned estimation methods in estimating the PMKE parameters using simulation results. We use the sample sizes n = { 20 , 50 , 100 , 200 , 350 } and some parameter values. We generate N = 1000 random samples from the PMKE distribution and calculate the average absolute biases (BIAS), mean square errors (MSEs), and mean relative estimates (MREs) using R software.
The BIAS, MSEs, and MREs have the forms
B I A S = 1 N i = 1 N | θ i ^ θ i | , M S E s = 1 N i = 1 N ( θ i ^ θ i ) 2 , M R E s = 1 N i = 1 N | θ i ^ θ i | / θ i ,
where θ i can represent α , λ , and β .
Table 2, Table 3, Table 4, Table 5 and Table 6 report the simulation results, including the BIAS, MSEs, and MREs from the seven estimation methods. We can note that they show small BIAS, MSEs, and MREs for all parameter combinations. All seven estimators have the consistency property, where these quantities decrease when the sample size increases for all scenarios. Further, we conclude that the MLEs, ADEs, CVMEs, LSEs, MPSs, PCEs, and WLSEs are close to the true PMKE parameters.
The simulation results in Table 2, Table 3, Table 4, Table 5 and Table 6 show the ranks of the estimates among all approaches by the superscripts in each row, and the partial sum of the ranks by R a n k s . The partial and overall ranks of these estimates reported in Table 7 indicate the performance ordering of all estimators. According to Table 7, the performance ordering of all methods is MPSEs, MLEs, ADEs, WLSEs, PCEs, CVMEs, and LSEs. In summary, the MPSEs outperform all estimates from the other approaches for the PMKE distribution with an overall score of 38. Furthermore, the maximum likelihood can be considered a rival approach for the MPS method with an overall score of 69.5 .

6. Bayes Estimation Method and Simulations

We obtain here the Bayes estimators of the parameters of the PMKE distribution using the symmetric and asymmetric loss functions. We have to choose a prior density function that covers our belief about the data and choose appropriate hyper-parameter values. Based on a complete sample, we adopt the square error (SE), general entropy (GE), and linear exponential (Linex) loss functions to obtain the estimates and consider that α , λ , and β are independent. We choose gamma-independent priors for the parameters, namely,
π 1 ( α ) α μ 1 1 exp ( α λ 1 ) , α > 0 , μ 1 , λ 1 > 0 ,
π 2 ( β ) β μ 2 1 exp ( β λ 2 ) , β > 0 , μ 2 , λ 2 > 0 ,
and
π 3 ( λ ) λ μ 3 1 exp ( λ λ 3 ) , λ > 0 , μ 3 , λ 3 > 0 .
The gamma prior encourages researchers to feel confident in the data. If we do not have any belief about the data, we must adopt non-informative priors by setting the following values, so that μ i tends to zero and λ i tends to infinity ( i = 1 , 2 , 3 ). In this way, we can change informative priors into non-informative priors. After this, we can find the form of the joint PDF prior of α , λ , and β as
π ( α , λ , β ) α μ 1 1 β μ 2 1 λ μ 3 1 exp α λ 1 + β λ 2 + λ λ 3 , α , β > 0 .
Thus,
L ( α , λ , β ) = ( α β λ ) n exp λ i = 1 n x i β i = 1 n exp ( λ x i β ) 1 α i = 1 n x i β 1 exp ( λ x i β ) 1 α 1 .
By multiplying the last two equations, we obtain
π * ( α , λ , β ) L ( α , λ , β ) π ( α , λ , β ) α μ 1 1 + n β μ 2 1 + n λ μ 3 1 + n × exp λ i = 1 n x i β i = 1 n exp ( λ x i β ) 1 α ( α λ 1 + β λ 2 + λ λ 3 ) .
According to the SE loss function, the Bayes estimator of B = B ( θ ) , where θ = ( α , λ , β ) , is
B ^ S E = θ B π * ( θ ) d θ ,
where π * ( θ ) is given by Equation (6). The Bayes estimator under the LINEX loss function is the value of
B ^ Linex = 1 c log E θ [ exp ( c θ ) ] ,
such that E θ [ exp ( c θ ) ] exists.
The Bayes estimate Θ ^ G E under the GE loss function is
B ^ GE = ( E θ [ θ q ] ) 1 q
such that E θ [ θ q ] exists.
We cannot find a result for the integrals in Equations (7)–(9). Thus, we use the Markov Chain Monte Carlo (MCMC) technique to approximate these integrals and consider the Metropolis–Hastings algorithm as an example of the MCMC technique to find the estimates.

6.1. The MCMC Method

We adopt the MCMC method here because we do not have a well-known distribution for the posterior density function. We then calculate the BEs of α , λ , and β under the conditional posterior distribution functions for these parameters:
π * ( α | β , λ ) α μ 1 1 + n × exp λ i = 1 n x i β i = 1 n exp ( λ x i β ) 1 α α λ 1 ,
π * ( β | α , λ ) β μ 2 1 + n × exp λ i = 1 n x i β i = 1 n exp ( λ x i β ) 1 α β λ 2 ,
and
π * ( λ | α , β ) β μ 3 1 + n × exp λ i = 1 n x i β i = 1 n exp ( λ x i β ) 1 α λ λ 3 .
Therefore, we do not have closed forms for the conditional posterior distributions for these parameters since they do not represent any known distribution. We use the Metropolis–Hasting algorithm below to explain the steps required to compute the Bayes estimates for B = B ( α , λ , β ) under the SE loss function.

6.2. The Metropolis–Hastings Algorithm

The Metropolis–Hastings algorithm can be considered as an MCMC method for generating data from any CDF. These generated samples can be used to approximate the distribution or to compute an integral (e.g., an expected value). We use the MCMC algorithm because it is sometimes difficult to obtain samples and the posterior comes from an unknown distribution.
  • The starting values are as follows: α ( 0 ) = α ^ M L E , β ( 0 ) = β ^ M L E , λ ( 0 ) = λ ^ M L E .
  • Set i = 1.
  • Generate α * from the proposal distribution N ( α i 1 , Var ( α i 1 ) .
  • Calculate the acceptance probability r ( α i 1 , α * ) = min 1 , π ( α * ) π ( α i 1 ) .
  • Generate U from a uniform on ( 0 , 1 ) .
  • If U < r ( α i 1 , α * ) accept the proposal distribution and set α i = α * . Otherwise, reject the proposal distribution and set α i = α i 1 .
  • Set i = i + 1 .
  • Repeat Steps 3–9 N times.
  • Obtain the BEs of α using MCMC under the SEL function as α ^ S E = i = M + 1 N 1 N M α i .
  • Obtain the BEs of α using MCMC under the LINEX function as α ^ L i n e x = 1 c log i = M + 1 N exp ( c α ( i ) ) N M .
  • Obtain the BEs of α using MCMC under the GE function α ^ G E = [ i = M + 1 N ( θ ( i ) ) q N M ] 1 q , where M is nburn units, and N is the number of MCMC iterations.
  • Perform Steps 3–11 to find the estimates of β , λ .
Table 8 and Table 9 report the simulation results including BIAS, MSEs, and MREs from the Bayesian estimators under three loss functions. We can note that they show small BIAS, MSEs, and MREs for all parameter combinations. The Bayesian estimates under the three loss functions have the consistency property, where these quantities decrease when the sample size increases for all scenarios. Further, all estimates are close to the true PMKE parameters.
The simulated results in Table 8 and Table 9 show the ranks of the estimates under different loss functions by the superscripts in each row, and the partial sum of the ranks by R a n k s . The partial and overall ranks of the explored estimates are listed in Table 7, indicating the performance ordering of all estimators. According to Table 10, the Bayesian estimates’ performance ordering is BGE, BLN, and BSE.

7. Application

We consider here a real dataset representing the failure times ( 10 3   h ) of a turbocharger of one type of engine with 40 observations.
We compare the proposed distribution with some other well-known distributions including MKE, APE, alpha power-exponentiated exponential (APExE), BE, ExE, MOE, MOLE, HEE, GOLLE, gamma-exponentiated exponential (GExE) [17], inverse-power logistic-exponential (IPLE) [9], Kumaraswamy exponential (KE), linear exponential (LNE) [18], logistic-exponential (LE) [19], Nadarajah–Haghighi exponential (NHE) [20], transmuted exponential (TE) [18], transmuted generalized exponential (TGE) [21], and exponential (E) distributions.
These models can be compared using discrimination measures such as Akaike information (AKI), consistent Akaike information (CAKI), Bayesian information (BAI), and Hannan–Quinn information (HAQUI) criteria. Further discrimination measures include Anderson Darling (ANDA), Cramér–von Mises (CRVMI), and Kolmogorov–Smirnov (KOSM) (with its p-value).
The MLEs and the analytical measures are calculated using the Wolfram Mathematica software (version 10). Table 11 provides analytical measures and the MLEs and their standard errors (SEs) in parentheses. The results in these tables indicate that the PMKE distribution provides a better fit than the other competing models and could be chosen as an adequate model to analyze the current data. The estimated PDF, CDF, SF, and P-P plots from the new distribution fitted to these data are reported in Figure 3.
A comparison of the PMKE distribution with its MKE sub-model using the likelihood ratio statistic (LR) is performed to check the hypotheses H 0 : β = 1 vs. H 1 . The LR statistic is equal to 7.124 and its p-value = 0.0076 , which rejects H 0 . Hence, the new PMKE distribution yields a superior fit to these data than the MKE distribution.

8. Conclusions

We have introduced a new continuous model called the power-modified Kies-exponential (PMKE) distribution and have derived some of its mathematical properties. The new density function can take different shapes. Furthermore, the PMKE failure rate function can be monotonically increasing, monotonically decreasing, or bathtub-shaped. We have also calculated some of its actuarial measures. We considered seven classical and Bayesian methods to estimate the parameters based on a complete sample. An extensive simulation study has been conducted to compare the performance of the estimates from the seven estimation methods. Based on our study, the classical maximum product of the spacing approach is recommended to estimate the PMKE parameters. The Bayesian approach provides more accurate estimates under general entropy and linear exponential loss functions than the square error loss function. A real data analysis shows that the new distribution provides a better fit than other distributions.

Author Contributions

Conceptualization, G.M.C.; Formal analysis, A.M.G.; Funding acquisition, N.M.A.; Investigation, A.Z.A. and E.H.H.; Methodology, A.Z.A., N.M.A., G.M.C. and E.H.H.; Project administration, A.Z.A.; Resources, A.M.G. and E.H.H.; Software, A.M.G.; Visualization, G.M.C.; Writing—original draft, A.Z.A., A.M.G., N.M.A. and E.H.H.; Writing—review & editing, A.Z.A., N.M.A. and G.M.C. All authors have read and agreed to the published version of the manuscript.

Funding

This study was funded by the Taif University Researchers Supporting Project (TURSP-2020/316), Taif University, Taif, Saudi Arabia.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Al-Babtain, A.A.; Shakhatreh, M.K.; Nassar, M.; Afify, A.Z. A New Modified Kies Family: Properties, Estimation Under Complete and Type-II Censored Samples, and Engineering Applications. Mathematics 2020, 8, 1345. [Google Scholar] [CrossRef]
  2. Ghitany, M.; Al-Mutairi, D.; Balakrishnan, N.; Al-Enezi, L. Power Lindley distribution and associated inference. Comput. Stat. Data Anal. 2013, 64, 20–33. [Google Scholar] [CrossRef]
  3. Krishnarani, S. On a power transformation of half-logistic distribution. J. Probab. Stat. 2016, 2016, 2084236. [Google Scholar] [CrossRef] [Green Version]
  4. Rady, E.; Hassanein, W.; Elhaddad, T. The power Lomax distribution with an application to bladder cancer data. SpringerPlus 2016, 5, 1–22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  5. Barco, K.; Mazucheli, J.; Janeiro, V. The inverse power Lindley distribution. Commun. Stat.-Simul. Comput. 2017, 46, 6308–6323. [Google Scholar] [CrossRef]
  6. Habibi, M.; Asgharzadeh, A. Power binomial exponential distribution: Modeling, simulation and application. Commun. Stat.-Simul. Comput. 2018, 47, 3042–3061. [Google Scholar] [CrossRef]
  7. Bakouch, H.; Khan, M.; Hussain, T.; Chesneau, C. A power log-Dagum distribution: Estimation and applications. J. Appl. Stat. 2019, 46, 874–892. [Google Scholar] [CrossRef]
  8. Al-Omari, A.; Alhyasat, K.; Ibrahim, K.; Abu Bakar, M. Power length-biased Suja distribution: Properties and application. Electron. J. Appl. Stat. Anal. 2019, 12, 429–452. [Google Scholar]
  9. Sobhi, A.L.; Mashail, M. The Inverse-Power Logistic-Exponential Distribution: Properties, Estimation Methods, and Application to Insurance Data. Mathematics 2020, 8, 2060. [Google Scholar] [CrossRef]
  10. Afify, A.Z.; Aljohani, H.M.; Alghamdi, A.S.; Gemeay, A.M.; Sarg, A.M. A New Two-Parameter Burr–Hatke Distribution: Properties and Bayesian and Non-Bayesian Inference with Applications. J. Math. 2021, 2021, 1061083. [Google Scholar] [CrossRef]
  11. Nadarajah, S.; Kotz, S. The beta exponential distribution. Reliab. Eng. Syst. Saf. 2006, 91, 689–697. [Google Scholar] [CrossRef]
  12. Mansoor, M.; Tahir, M.; Cordeiro, G.M.; Provost, S.B.; Alzaatreh, A. The Marshall-Olkin logistic-exponential distribution. Commun. Stat.-Theory Methods 2019, 48, 220–234. [Google Scholar] [CrossRef]
  13. Gupta, R.; Kundu, D. Exponentiated exponential family: An alternative to gamma and Weibull distributions. Biom. J. J. Math. Methods Biosci. 2001, 43, 117–130. [Google Scholar] [CrossRef]
  14. Pinho, L.G.B.; Cordeiro, G.M.; Nobre, J.S. The Harris extended exponential distribution. Commun. Stat.-Theory Methods 2015, 44, 3486–3502. [Google Scholar] [CrossRef]
  15. Marshall, A.W.; Olkin, I. A new method for adding a parameter to a family of distributions with application to the exponential and Weibull families. Biometrika 1997, 84, 641–652. [Google Scholar] [CrossRef]
  16. Artzner, P. Application of coherent risk measures to capital requirements in insurance. N. Am. Actuar. J. 1999, 3, 11–25. [Google Scholar] [CrossRef]
  17. Ristić, M.M.; Balakrishnan, N. The gamma-exponentiated exponential distribution. J. Stat. Comput. Simul. 2012, 82, 1191–1206. [Google Scholar] [CrossRef]
  18. Tian, Y.; Tian, M.; Zhu, Q. Transmuted linear exponential distribution: A new generalization of the linear exponential distribution. Commun. Stat.-Simul. Comput. 2014, 43, 2661–2677. [Google Scholar] [CrossRef]
  19. Lan, Y.; Leemis, L.M. The logistic–exponential survival distribution. Nav. Res. Logist. (NRL) 2008, 55, 252–264. [Google Scholar] [CrossRef]
  20. Nadarajah, S.; Haghighi, F. An extension of the exponential distribution. Statistics 2011, 45, 543–558. [Google Scholar] [CrossRef]
  21. Khan, M.S.; King, R.; Hudson, I.L. Transmuted generalized exponential distribution: A generalization of the exponential distribution with applications to survival data. Commun. Stat.-Simul. Comput. 2017, 46, 4377–4398. [Google Scholar] [CrossRef]
Figure 1. Density shapes of the PMKE distribution.
Figure 1. Density shapes of the PMKE distribution.
Entropy 24 00883 g001
Figure 2. Hazard shapes of the PMKE distribution.
Figure 2. Hazard shapes of the PMKE distribution.
Entropy 24 00883 g002
Figure 3. Histogram of the data with the estimated PDF, CDF, and SF of the PMKE model and P-P plot.
Figure 3. Histogram of the data with the estimated PDF, CDF, and SF of the PMKE model and P-P plot.
Entropy 24 00883 g003
Table 1. VaR, TVaR, and ES for four distributions.
Table 1. VaR, TVaR, and ES for four distributions.
Significance LevelPMKEMKEExEE
VaR
( α = 0.25 , λ = 0.75 , β = 0.25 )( α = 0.25 , λ = 0.75 )( λ = 0.75 , c = 0.5 ) λ = 0.75
0.601.284040.71821.984961.21777
0.653.579191.073932.18471.39524
0.7011.093141.536362.410381.60011
0.7531.481762.105652.672151.84242
0.8080.607512.785122.986812.13898
0.85194.26033.594753.38582.52131
0.90466.74914.596563.939513.06019
0.951255.6675.998924.872373.98139
( α = 0.5 , λ = 0.1 , β = 0.5 )( α = 0.5 , λ = 0.1 )( λ = 0.1 , c = 2 ) λ = 0.1
0.6038.500236.174764.485369.17685
0.6557.237627.516645.505410.51419
0.7083.002169.05586.7386212.05805
0.75118.071710.830258.259413.88404
0.80165.989112.9038410.1926816.11887
0.85233.13815.3953112.7731819.00006
0.90333.519518.5632116.528323.06088
0.95510.76123.178423.1418730.0029
TVaR
( α = 0.25 , λ = 0.75 , β = 0.25 )( α = 0.25 , λ = 0.75 )( λ = 0.75 , c = 0.5 ) λ = 0.75
0.60587.64483.293543.389592.54679
0.65671.28053.637283.576242.72426
0.70782.05034.027463.789782.92913
0.75934.51374.470544.04023.17144
0.801154.9894.979244.344233.468
0.851496.7935.579864.733213.85034
0.902090.2296.332295.277474.38921
0.953398.1487.419156.20145.31041
( α = 0.5 , λ = 0.1 , β = 0.5 )( α = 0.5 , λ = 0.1 )( λ = 0.1 , c = 2 ) λ = 0.1
0.60250.830614.5789713.2543719.19206
0.65279.89815.685914.4364820.52941
0.70314.972316.9221415.8255722.07326
0.75357.996118.3223117.4966623.89946
0.80412.359119.9432919.5747226.13408
0.85483.958821.8886322.2947129.01554
0.90586.159224.3806226.1847133.0764
0.95760.577328.0795832.9286240.01812
ES
( α = 0.25 , λ = 0.75 , β = 0.25 )( α = 0.25 , λ = 0.75 )( λ = 0.75 , c = 0.5 ) λ = 0.75
0.601.163120.118921.06970.51717
0.651.319380.178031.147650.57774
0.701.772380.25791.22960.64326
0.752.036460.361511.316810.71488
0.805.197450.491151.411010.79428
0.8512.513980.649171.514910.88408
0.9029.036520.839491.633230.989
0.9568.682551.071381.776411.11947
( α = 0.5 , λ = 0.1 , β = 0.5 )( α = 0.5 , λ = 0.1 )( λ = 0.1 , c = 2 ) λ = 0.1
0.606.639951.857571.384233.89732
0.659.772182.24011.660824.35373
0.7014.035042.670691.978034.84748
0.7519.742083.154072.344225.3872
0.8027.30553.696842.771725.9855
0.8537.320494.309213.28016.66226
0.9050.778115.008963.904247.45289
0.9569.776175.833844.721958.43611
Table 2. Simulation results for the PMKE distribution with α = 0.25 , λ = 0.5 , and β = 0.75 .
Table 2. Simulation results for the PMKE distribution with α = 0.25 , λ = 0.5 , and β = 0.75 .
nEst.Est. Par.MLEsADEsCVMEsMPSsLSEsPCEsWLSEs
20ABBs α ^ 0.10547 1 0.1651 3 0.20456 6 0.15261 2 0.19427 5 0.20905 7 0.18316 4
λ ^ 0.23154 2 0.24381 4 0.26215 6 0.22327 1 0.25096 5 0.29056 7 0.24063 3
β ^ 0.269 1 0.30396 3 0.36149 7 0.30204 2 0.35745 6 0.30548 4 0.33803 5
MSEs α ^ 0.02658 1 0.05572 3 0.0786 7 0.04614 2 0.07008 5 0.07713 6 0.06487 4
λ ^ 0.07371 2 0.07921 4 0.08998 6 0.06928 1 0.08217 5 0.11221 7 0.07723 3
β ^ 0.10309 1 0.12297 3 0.15811 7 0.12032 2 0.15647 6 0.12364 4 0.14237 5
MREs α ^ 0.42189 1 0.66042 3 0.81824 6 0.61043 2 0.77709 5 0.8362 7 0.73264 4
λ ^ 0.46307 2 0.48762 4 0.52431 6 0.44655 1 0.50193 5 0.58112 7 0.48125 3
β ^ 0.35867 1 0.40528 3 0.48199 7 0.40273 2 0.4766 6 0.4073 4 0.4507 5
R a n k s 12 1 30 3 58 7 15 2 48 5 53 6 36 4
50ABBs α ^ 0.05994 1 0.1124 3 0.13081 6 0.08596 2 0.13006 5 0.17207 7 0.11816 4
λ ^ 0.14877 1 0.18915 4 0.1966 5 0.16195 2 0.19892 6 0.2052 7 0.18569 3
β ^ 0.16898 1 0.23083 4 0.27988 6 0.1916 2 0.2812 7 0.22263 3 0.24201 5
MSEs α ^ 0.00728 1 0.03134 3 0.03862 6 0.0159 2 0.03831 5 0.05597 7 0.03171 4
λ ^ 0.03537 1 0.05115 4 0.05264 5 0.03995 2 0.05384 6 0.0666 7 0.04888 3
β ^ 0.04627 1 0.07953 4 0.10797 6 0.05666 2 0.10921 7 0.07077 3 0.08584 5
MREs α ^ 0.23974 1 0.4496 3 0.52326 6 0.34385 2 0.52025 5 0.68829 7 0.47262 4
λ ^ 0.29755 1 0.37831 4 0.39319 5 0.3239 2 0.39784 6 0.4104 7 0.37139 3
β ^ 0.2253 1 0.30777 4 0.37317 6 0.25546 2 0.37493 7 0.29683 3 0.32269 5
R a n k s 9 1 33 3 51 5.5 18 2 54 7 51 5.5 36 4
100ABs α ^ 0.04284 1 0.06749 3 0.09533 6 0.0512 2 0.09485 5 0.13417 7 0.07191 4
λ ^ 0.09809 1 0.14396 3 0.1505 6 0.1118 2 0.14914 5 0.17052 7 0.14857 4
β ^ 0.09306 1 0.1661 4 0.21948 7 0.11674 2 0.21413 6 0.16475 3 0.18097 5
MSEs α ^ 0.00529 1 0.01059 3 0.02113 6 0.00548 2 0.02029 5 0.03617 7 0.01106 4
λ ^ 0.01913 1 0.03043 3 0.03331 6 0.02105 2 0.03208 4 0.04839 7 0.03321 5
β ^ 0.01743 1 0.04344 4 0.07185 7 0.02306 2 0.06906 6 0.04316 3 0.04985 5
MREs α ^ 0.17137 1 0.26998 3 0.38132 6 0.20479 2 0.37941 5 0.53666 7 0.28764 4
λ ^ 0.19618 1 0.28793 3 0.30099 6 0.2236 2 0.29829 5 0.34105 7 0.29713 4
β ^ 0.12409 1 0.22146 4 0.29264 7 0.15566 2 0.2855 6 0.21967 3 0.24129 5
R a n k s 9 1 30 3 57 7 18 2 47 5 51 6 40 4
200ABBs α ^ 0.03007 1 0.04459 3 0.0593 5 0.03615 2 0.06226 6 0.10307 7 0.04857 4
λ ^ 0.06325 1 0.09736 3 0.11607 6 0.07898 2 0.12006 7 0.11247 4 0.11304 5
β ^ 0.06064 1 0.11548 3 0.15909 7 0.08547 2 0.15557 6 0.11585 4 0.13411 5
MSEs α ^ 0.00343 2 0.00408 3 0.00717 5 0.00235 1 0.00911 6 0.02137 7 0.00415 4
λ ^ 0.01161 2 0.01485 3 0.02038 5 0.01118 1 0.02118 6 0.02333 7 0.01893 4
β ^ 0.01027 1 0.02153 4 0.0395 7 0.01284 2 0.039 6 0.021 3 0.02795 5
MREs α ^ 0.12029 1 0.17836 3 0.23719 5 0.14459 2 0.24904 6 0.41227 7 0.19428 4
λ ^ 0.1265 1 0.19471 3 0.23214 6 0.15795 2 0.24011 7 0.22495 4 0.22607 5
β ^ 0.08085 1 0.15397 3 0.21212 7 0.11395 2 0.20743 6 0.15447 4 0.17881 5
R a n k s 11 1 28 3 53 6 16 2 56 7 47 5 41 4
350ABBs α ^ 0.02496 2 0.03014 3 0.04105 5 0.02376 1 0.04493 6 0.06871 7 0.03323 4
λ ^ 0.04739 1 0.07593 3 0.08991 5 0.05012 2 0.0913 6 0.09237 7 0.08069 4
β ^ 0.04054 1 0.0838 3 0.12006 6 0.05366 2 0.12382 7 0.08514 4 0.09207 5
MSEs α ^ 0.00416 6 0.00168 2 0.00329 4 0.00106 1 0.00348 5 0.01005 7 0.00196 3
λ ^ 0.00819 2 0.00964 3 0.01211 5 0.00475 1 0.01271 6 0.0156 7 0.0101 4
β ^ 0.00588 2 0.01169 3 0.023 6 0.00567 1 0.02354 7 0.01188 4 0.01325 5
MREs α ^ 0.09986 2 0.12057 3 0.1642 5 0.09502 1 0.17974 6 0.27486 7 0.13294 4
λ ^ 0.09477 1 0.15186 3 0.17982 5 0.10023 2 0.1826 6 0.18474 7 0.16138 4
β ^ 0.05406 1 0.11174 3 0.16008 6 0.07155 2 0.16509 7 0.11352 4 0.12276 5
R a n k s 18 2 26 3 47 5 13 1 56 7 54 6 38 4
Table 3. Simulation results for the PMKE distribution with α = 1.5 , λ = 0.75 , and β = 0.5 .
Table 3. Simulation results for the PMKE distribution with α = 1.5 , λ = 0.75 , and β = 0.5 .
nEst.Est. Par.MLEsADEsCVMEsMPSsLSEsPCEsWLSEs
20BIAS α ^ 0.45835 3 0.45881 4 0.46621 7 0.42896 1 0.46615 6 0.46557 5 0.45507 2
λ ^ 0.07743 7 0.07404 6 0.07255 5 0.06999 3 0.07194 4 0.06983 2 0.06305 1
β ^ 0.20127 7 0.166 2 0.18587 5 0.15415 1 0.17612 4 0.19208 6 0.1726 3
MSEs α ^ 0.22203 4 0.22051 3 0.22818 7 0.20891 1 0.22806 6 0.22643 5 0.21985 2
λ ^ 0.00982 7 0.00943 6 0.00913 5 0.0084 3 0.00834 2 0.00847 4 0.00718 1
β ^ 0.06072 7 0.04218 2 0.05277 6 0.03402 1 0.04492 4 0.05181 5 0.04484 3
MREs α ^ 0.30557 3 0.30587 4 0.31081 7 0.28597 1 0.31077 6 0.31038 5 0.30338 2
λ ^ 0.10323 7 0.09872 6 0.09674 5 0.09331 3 0.09592 4 0.0931 2 0.08406 1
β ^ 0.40254 7 0.33201 2 0.37174 5 0.3083 1 0.35223 4 0.38417 6 0.34521 3
R a n k s 52 6.5 35 3 52 6.5 15 1 40 4.5 40 4.5 18 2
50BIAS α ^ 0.44961 4 0.43566 2 0.45982 6 0.39747 1 0.46208 7 0.45708 5 0.44484 3
λ ^ 0.04714 6 0.04219 3 0.04778 7 0.04033 1 0.04711 5 0.04455 4 0.04088 2
β ^ 0.18746 7 0.15016 1 0.17385 4 0.15108 2 0.17703 6 0.17565 5 0.15643 3
MSEs α ^ 0.21603 4 0.20735 2 0.22272 6 0.19354 1 0.22423 7 0.22124 5 0.21319 3
λ ^ 0.00412 7 0.00294 2 0.00399 6 0.00269 1 0.00366 5 0.00341 4 0.00296 3
β ^ 0.04687 7 0.03029 1 0.04154 5 0.03163 2 0.04236 6 0.04078 4 0.03357 3
MREs α ^ 0.29974 4 0.29044 2 0.30655 6 0.26498 1 0.30805 7 0.30472 5 0.29656 3
λ ^ 0.06286 6 0.05625 3 0.0637 7 0.05377 1 0.06281 5 0.0594 4 0.0545 2
β ^ 0.37492 7 0.30032 1 0.34771 4 0.30215 2 0.35406 6 0.3513 5 0.31287 3
R a n k s 52 6 17 2 51 5 12 1 54 7 41 4 25 3
100BIAS α ^ 0.41393 2 0.42517 4 0.43929 6 0.34777 1 0.43885 5 0.44035 7 0.42266 3
λ ^ 0.03267 7 0.03099 3 0.03185 6 0.03042 2 0.03161 4 0.03168 5 0.02972 1
β ^ 0.15646 5 0.14163 2 0.16716 7 0.12756 1 0.15626 4 0.16294 6 0.15093 3
MSEs α ^ 0.1921 2 0.20049 4 0.20996 6 0.168 1 0.20882 5 0.21015 7 0.19852 3
λ ^ 0.00178 7 0.00168 3 0.00169 4 0.00155 1 0.00176 6 0.0017 5 0.0016 2
β ^ 0.03311 5 0.02993 2 0.03658 7 0.0229 1 0.03212 4 0.03352 6 0.03011 3
MREs α ^ 0.27595 2 0.28344 4 0.29286 6 0.23184 1 0.29257 5 0.29357 7 0.28177 3
λ ^ 0.04356 7 0.04132 3 0.04247 6 0.04057 2 0.04215 4 0.04224 5 0.03962 1
β ^ 0.31292 5 0.29327 2 0.33432 7 0.25512 1 0.31253 4 0.32588 6 0.30185 3
R a n k s 42 5 27 3 55 7 11 1 41 4 54 6 22 2
200BIAS α ^ 0.38589 3 0.38271 2 0.4126 6 0.31596 1 0.41093 5 0.415 7 0.3901 4
λ ^ 0.0247 6 0.02191 1 0.02271 4 0.02277 5 0.02485 7 0.02262 3 0.02209 2
β ^ 0.14498 6 0.13511 2 0.14291 5 0.11632 1 0.15041 7 0.14008 4 0.13984 3
MSEs α ^ 0.17273 3 0.17228 2 0.19221 6 0.15037 1 0.19112 5 0.19246 7 0.17676 4
λ ^ 0.00107 7 0.00077 1 0.00095 5 0.00092 4 0.00104 6 0.00084 2 0.00085 3
β ^ 0.02771 6 0.02422 2 0.02688 5 0.02012 1 0.03047 7 0.02473 3 0.02543 4
MREs α ^ 0.25726 3 0.25514 2 0.27507 6 0.21064 1 0.27396 5 0.27666 7 0.26006 4
λ ^ 0.03293 6 0.02922 1 0.03027 4 0.03036 5 0.03313 7 0.03016 3 0.02945 2
β ^ 0.28995 6 0.27023 2 0.28583 5 0.23264 1 0.30681 7 0.28016 4 0.27968 3
R a n k s 46 5.5 15 1 46 5.5 20 2 56 7 40 4 29 3
350BIAS α ^ 0.34345 2 0.37295 4 0.38954 5 0.24304 1 0.38986 6 0.39083 7 0.35706 3
λ ^ 0.0178 4 0.01609 1 0.01784 5 0.01619 2 0.01904 7 0.01684 3 0.01839 6
β ^ 0.11937 2 0.12745 5 0.14139 6 0.08654 1 0.145 7 0.12594 3 0.1262 4
MSEs α ^ 0.14698 2 0.16367 4 0.1762 6 0.11523 1 0.17584 5 0.17771 7 0.15531 3
λ ^ 0.00051 4 0.00045 2 0.00056 5 0.00043 1 0.00063 7 0.00047 3 0.00058 6
β ^ 0.01941 2 0.02084 4 0.02649 6 0.01371 1 0.02779 7 0.0201 3 0.02198 5
MREs α ^ 0.22897 2 0.24864 4 0.25969 5 0.16203 1 0.2599 6 0.26055 7 0.23804 3
λ ^ 0.02374 4 0.02146 1 0.02378 5 0.02158 2 0.02539 7 0.02245 3 0.02452 6
β ^ 0.23873 2 0.25491 5 0.28277 6 0.17308 1 0.29 7 0.25188 3 0.25241 4
R a n k s 24 2 30 3 49 6 11 1 59 7 39 4 40 5
Table 4. Simulation results for the PMKE distribution with α = 0.5 , λ = 1.5 , and β = 1.5 .
Table 4. Simulation results for the PMKE distribution with α = 0.5 , λ = 1.5 , and β = 1.5 .
nEst.Est. Par.MLEsADEsCVMEsMPSsLSEsPCEsWLSEs
20BIAS α ^ 0.14974 3 0.17277 6 0.17838 7 0.14762 2 0.1572 4 0.14438 1 0.16238 5
λ ^ 0.3205 7 0.28181 1 0.29513 4 0.30312 5 0.29169 3 0.30945 6 0.28909 2
β ^ 0.39947 3 0.4004 4 0.39723 2 0.38656 1 0.40046 5 0.41067 7 0.40114 6
MSEs α ^ 0.03734 3 0.04755 6 0.05368 7 0.03178 1 0.03801 4 0.03377 2 0.04114 5
λ ^ 0.12959 7 0.10533 1 0.11493 4 0.12076 5 0.11337 3 0.12386 6 0.1113 2
β ^ 0.1831 4 0.18238 3 0.18136 2 0.1756 1 0.18355 5 0.18932 7 0.18371 6
MREs α ^ 0.29948 3 0.34554 6 0.35675 7 0.29524 2 0.31439 4 0.28875 1 0.32475 5
λ ^ 0.21367 7 0.18788 1 0.19675 4 0.20208 5 0.19446 3 0.2063 6 0.19272 2
β ^ 0.26631 3 0.26693 4 0.26482 2 0.2577 1 0.26697 5 0.27378 7 0.26742 6
R a n k s 40 6 32 2 39 4.5 23 1 36 3 43 7 39 4.5
50BIAS α ^ 0.12947 1 0.1473 4 0.16726 7 0.14121 2 0.15413 6 0.14132 3 0.15297 5
λ ^ 0.24832 4 0.24026 3 0.24909 5 0.25179 6 0.25765 7 0.23569 2 0.23425 1
β ^ 0.36268 2 0.36446 3 0.38594 6 0.35701 1 0.38617 7 0.36965 4 0.37672 5
MSEs α ^ 0.02581 1 0.03348 4 0.04248 7 0.02857 2 0.03441 5 0.02966 3 0.03588 6
λ ^ 0.0888 6 0.08048 3 0.08408 4 0.08668 5 0.09225 7 0.07847 1 0.07883 2
β ^ 0.15856 2 0.16081 3 0.17706 7 0.15663 1 0.17428 6 0.16342 4 0.16961 5
MREs α ^ 0.25894 1 0.29461 4 0.33451 7 0.28243 2 0.30826 6 0.28265 3 0.30594 5
λ ^ 0.16555 4 0.16017 3 0.16606 5 0.16786 6 0.17177 7 0.15712 2 0.15617 1
β ^ 0.24178 2 0.24297 3 0.26062 7 0.23801 1 0.25745 6 0.24643 4 0.25115 5
R a n k s 23 1 30 4 55 6 26 2.5 57 7 26 2.5 35 5
100BIAS α ^ 0.11444 1 0.1327 4 0.14602 7 0.12568 2 0.13867 6 0.12572 3 0.13836 5
λ ^ 0.19648 3 0.1892 1 0.22367 7 0.19202 2 0.21737 6 0.19741 4 0.20651 5
β ^ 0.30725 2 0.33206 4 0.3784 7 0.30983 3 0.36984 6 0.30638 1 0.35393 5
MSEs α ^ 0.0199 1 0.02695 4 0.03182 7 0.02371 3 0.02773 5 0.023 2 0.028 6
λ ^ 0.05897 4 0.05214 1 0.07155 7 0.0527 2 0.06621 6 0.0548 3 0.06022 5
β ^ 0.1225 2 0.13985 4 0.16835 7 0.12506 3 0.16317 6 0.12206 1 0.1524 5
MREs α ^ 0.22889 1 0.26539 4 0.29204 7 0.25136 2 0.27733 6 0.25143 3 0.27672 5
λ ^ 0.13099 3 0.12614 1 0.14912 7 0.12801 2 0.14491 6 0.13161 4 0.13767 5
β ^ 0.20483 2 0.22137 4 0.25227 7 0.20656 3 0.24656 6 0.20425 1 0.23595 5
R a n k s 19 1 27 4 63 7 22 2.5 53 6 22 2.5 46 5
200BIAS α ^ 0.08444 1 0.10461 3 0.11825 6 0.09634 2 0.131 7 0.10629 4 0.11375 5
λ ^ 0.15163 2 0.15645 3 0.18805 6 0.1498 1 0.20784 7 0.15863 4 0.17325 5
β ^ 0.2276 1 0.26839 4 0.32534 6 0.24005 2 0.33897 7 0.2612 3 0.29096 5
MSEs α ^ 0.0119 1 0.01785 3 0.02045 6 0.0152 2 0.02539 7 0.01806 4 0.02003 5
λ ^ 0.03582 2 0.03738 3 0.05181 6 0.03402 1 0.05867 7 0.03739 4 0.04404 5
β ^ 0.07697 1 0.10098 4 0.13511 6 0.08518 2 0.14296 7 0.09361 3 0.11403 5
MREs α ^ 0.16888 1 0.20921 3 0.2365 6 0.19268 2 0.262 7 0.21259 4 0.22749 5
λ ^ 0.10108 2 0.1043 3 0.12537 6 0.09986 1 0.13856 7 0.10576 4 0.1155 5
β ^ 0.15173 1 0.17893 4 0.2169 6 0.16003 2 0.22598 7 0.17413 3 0.19397 5
R a n k s 12 1 30 3 54 6 15 2 63 7 33 4 45 5
350BIAS α ^ 0.06941 1 0.08888 5 0.10921 7 0.07805 2 0.10674 6 0.07832 3 0.08647 4
λ ^ 0.11555 2 0.13707 5 0.17484 7 0.11374 1 0.17422 6 0.12827 3 0.13702 4
β ^ 0.19214 2 0.23988 5 0.29714 7 0.18466 1 0.2886 6 0.19349 3 0.23249 4
MSEs α ^ 0.00753 1 0.01261 5 0.01804 7 0.01093 3 0.01667 6 0.01026 2 0.01246 4
λ ^ 0.02074 2 0.028 4 0.04453 7 0.01976 1 0.04313 6 0.02529 3 0.02867 5
β ^ 0.05559 2 0.082 5 0.11691 7 0.05474 1 0.11133 6 0.05731 3 0.0783 4
MREs α ^ 0.13881 1 0.17776 5 0.21841 7 0.1561 2 0.21348 6 0.15663 3 0.17295 4
λ ^ 0.07704 2 0.09138 5 0.11656 7 0.07583 1 0.11615 6 0.08552 3 0.09135 4
β ^ 0.12809 2 0.15992 5 0.1981 7 0.12311 1 0.1924 6 0.129 3 0.15499 4
R a n k s 15 2 44 5 63 7 13 1 54 6 26 3 37 4
Table 5. Simulation results for the PMKE distribution with α = 0.75 , λ = 1.5 , and β = 0.25 .
Table 5. Simulation results for the PMKE distribution with α = 0.75 , λ = 1.5 , and β = 0.25 .
nEst.Est. Par.MLEsADEsCVMEsMPSsLSEsPCEsWLSEs
20BIAS α ^ 0.20773 1 0.22369 3 0.22128 2 0.22869 5 0.24303 6 0.25651 7 0.2266 4
λ ^ 0.34922 6 0.30255 1 0.33439 4 0.33596 5 0.32503 3 0.35047 7 0.31713 2
β ^ 0.09238 4 0.0795 1 0.09025 3 0.09555 5 0.09746 6 0.12761 7 0.08111 2
MSEs α ^ 0.05242 1 0.05785 3 0.05756 2 0.06355 5 0.06916 6 0.07602 7 0.05886 4
λ ^ 0.1526 7 0.12083 1 0.14254 5 0.13906 4 0.13558 3 0.14711 6 0.12841 2
β ^ 0.0144 5 0.01056 1 0.013 3 0.01423 4 0.01466 6 0.02212 7 0.01102 2
MREs α ^ 0.27697 1 0.29825 3 0.29504 2 0.30493 5 0.32404 6 0.35535 7 0.30213 4
λ ^ 0.23282 6 0.2017 1 0.22293 4 0.22397 5 0.21668 3 0.23365 7 0.21142 2
β ^ 0.36953 4 0.31802 1 0.36098 3 0.38221 5 0.38985 6 0.51044 7 0.32442 2
R a n k s 35 4 15 1 28 3 43 5 45 6 62 7 24 2
50BIAS α ^ 0.19535 1 0.21235 4 0.21614 5 0.20562 2 0.22003 6 0.24855 7 0.20956 3
λ ^ 0.29561 4 0.26051 1 0.31241 6 0.28479 2 0.3087 5 0.34083 7 0.29357 3
β ^ 0.08022 5 0.07184 3 0.07913 4 0.0712 1 0.08145 6 0.10378 7 0.07175 2
MSEs α ^ 0.0463 1 0.05187 4 0.05327 5 0.04948 2 0.0556 6 0.06784 7 0.05105 3
λ ^ 0.11949 4 0.09376 1 0.1264 6 0.1053 2 0.12321 5 0.14317 7 0.11306 3
β ^ 0.01036 6 0.00786 3 0.00955 4 0.00713 1 0.00985 5 0.01533 7 0.0078 2
MREs α ^ 0.26047 1 0.28314 4 0.28819 5 0.27416 2 0.29338 6 0.3314 7 0.27942 3
λ ^ 0.19708 4 0.17367 1 0.20827 6 0.18986 2 0.2058 5 0.22722 7 0.19572 3
β ^ 0.32089 5 0.28738 3 0.31653 4 0.28479 1 0.32579 6 0.41513 7 0.28701 2
R a n k s 31 4 24 2.5 45 5 15 1 50 6 63 7 24 2.5
100BIAS α ^ 0.17146 1 0.18852 3 0.19665 5 0.18471 2 0.20589 6 0.24556 7 0.19053 4
λ ^ 0.26301 3 0.24329 2 0.29034 6 0.23282 1 0.27692 5 0.32626 7 0.26575 4
β ^ 0.0627 3 0.06024 1 0.07468 6 0.06058 2 0.07285 5 0.08418 7 0.06609 4
MSEs α ^ 0.03716 1 0.04253 3 0.04528 5 0.04197 2 0.049 6 0.065 7 0.04358 4
λ ^ 0.09625 3.5 0.08068 2 0.11197 6 0.07366 1 0.10194 5 0.13469 7 0.09625 3.5
β ^ 0.00601 3 0.00511 1 0.00783 6 0.00518 2 0.00749 5 0.00994 7 0.00639 4
MREs α ^ 0.22861 1 0.25136 3 0.26221 5 0.24628 2 0.27452 6 0.32741 7 0.25404 4
λ ^ 0.17534 3 0.16219 2 0.19356 6 0.15521 1 0.18461 5 0.21751 7 0.17716 4
β ^ 0.2508 3 0.24096 1 0.29872 6 0.24231 2 0.29142 5 0.3367 7 0.26437 4
R a n k s 21.5 3 18 2 51 6 15 1 48 5 63 7 35.5 4
200BIAS α ^ 0.14956 1 0.16078 3 0.1828 6 0.15529 2 0.17908 5 0.22997 7 0.16405 4
λ ^ 0.20387 2 0.20984 3 0.25381 6 0.19687 1 0.24438 5 0.30728 7 0.22585 4
β ^ 0.05144 2 0.05281 3 0.06348 6 0.04901 1 0.06305 5 0.07363 7 0.05517 4
MSEs α ^ 0.02958 1 0.03329 3 0.04027 6 0.03177 2 0.03953 5 0.05772 7 0.03398 4
λ ^ 0.06103 2 0.0625 3 0.08901 6 0.05646 1 0.08353 5 0.12265 7 0.07255 4
β ^ 0.00398 2.5 0.00398 2.5 0.00557 5 0.00352 1 0.0056 6 0.00769 7 0.00429 4
MREs α ^ 0.19942 1 0.21438 3 0.24374 6 0.20705 2 0.23877 5 0.30662 7 0.21873 4
λ ^ 0.13592 2 0.13989 3 0.16921 6 0.13124 1 0.16292 5 0.20485 7 0.15057 4
β ^ 0.20575 2 0.21123 3 0.25391 6 0.19606 1 0.25221 5 0.29452 7 0.22066 4
R a n k s 15.5 2 26.5 3 53 6 12 1 46 5 63 7 36 4
350BIAS α ^ 0.12478 1 0.14793 3 0.15803 5 0.12955 2 0.16534 6 0.22432 7 0.15062 4
λ ^ 0.16581 2 0.19051 3 0.22704 5 0.14927 1 0.23644 6 0.29277 7 0.19926 4
β ^ 0.04055 2 0.04831 3 0.05566 5 0.03872 1 0.05647 6 0.06422 7 0.04911 4
MSEs α ^ 0.02135 1 0.02916 3 0.03265 5 0.02425 2 0.03442 6 0.05524 7 0.02995 4
λ ^ 0.04211 2 0.05268 3 0.07368 5 0.033 1 0.07872 6 0.11143 7 0.05687 4
β ^ 0.00249 2 0.00333 3 0.00435 5 0.00213 1 0.00447 6 0.0055 7 0.00342 4
MREs α ^ 0.16637 1 0.19725 3 0.21071 5 0.17274 2 0.22045 6 0.29909 7 0.20083 4
λ ^ 0.11054 2 0.12701 3 0.15136 5 0.09951 1 0.15763 6 0.19518 7 0.13284 4
β ^ 0.16221 2 0.19324 3 0.22264 5 0.15488 1 0.22588 6 0.25689 7 0.19645 4
R a n k s 15 2 27 3 45 5 12 1 54 6 63 7 36 4
Table 6. Simulation results for the PMKE distribution with α = 0.75 , λ = 0.5 , and β = 2.5 .
Table 6. Simulation results for the PMKE distribution with α = 0.75 , λ = 0.5 , and β = 2.5 .
nEst.Est. Par.MLEsADEsCVMEsMPSsLSEsPCEsWLSEs
20BIAS α ^ 0.12497 2 0.12865 5 0.13515 7 0.12258 1 0.13143 6 0.12533 3 0.12861 4
λ ^ 0.08677 2 0.08903 5 0.097 7 0.08305 1 0.09674 6 0.08721 3 0.08767 4
β ^ 0.28943 7 0.19862 3 0.20827 4 0.17409 1 0.22532 5 0.2395 6 0.18915 2
MSEs α ^ 0.02213 2.5 0.02304 4 0.02521 7 0.02116 1 0.02401 6 0.02213 2.5 0.02323 5
λ ^ 0.01189 3 0.01221 5 0.01415 7 0.01065 1 0.01407 6 0.0117 2 0.01212 4
β ^ 0.0392 6 0.03834 4 0.03896 5 0.03381 1 0.03929 7 0.03824 3 0.03707 2
MREs α ^ 0.16663 2 0.17153 5 0.1802 7 0.16344 1 0.17524 6 0.1671 3 0.17148 4
λ ^ 0.17353 2 0.17806 5 0.19401 7 0.1661 1 0.19348 6 0.17442 3 0.17533 4
β ^ 0.09577 7 0.0785 5 0.07731 4 0.06963 1 0.07135 2 0.0794 6 0.07566 3
R a n k s 33.5 4 41 5 55 7 9 1 50 6 31.5 2 32 3
50BIAS α ^ 0.09107 3 0.09413 4 0.09963 6 0.08776 1 0.10032 7 0.08983 2 0.09796 5
λ ^ 0.05438 2 0.05921 4 0.06494 7 0.05306 1 0.06307 6 0.05604 3 0.06154 5
β ^ 0.19039 6 0.18917 3 0.18949 4 0.1665 1 0.18996 5 0.19087 7 0.18801 2
MSEs α ^ 0.01252 3 0.01343 4 0.01492 7 0.01145 1 0.01488 6 0.01232 2 0.01447 5
λ ^ 0.0048 2 0.00565 4 0.00668 7 0.00462 1 0.00632 6 0.00506 3 0.00597 5
β ^ 0.0374 6 0.03709 3 0.03726 4 0.0326 1 0.03737 5 0.03747 7 0.0368 2
MREs α ^ 0.12142 3 0.12551 4 0.13283 6 0.11702 1 0.13375 7 0.11978 2 0.13061 5
λ ^ 0.10876 2 0.11842 4 0.12988 7 0.10611 1 0.12613 6 0.11209 3 0.12308 5
β ^ 0.07616 6 0.07567 3 0.0758 4 0.0666 1 0.07599 5 0.07635 7 0.0752 2
R a n k s 33 2.5 33 2.5 52 6 9 1 53 7 36 4.5 36 4.5
100BIAS α ^ 0.0749 2 0.07735 5 0.08385 7 0.06886 1 0.07891 6 0.07579 3 0.07639 4
λ ^ 0.03988 2 0.04416 5 0.04588 6 0.03897 1 0.04595 7 0.04122 3 0.04357 4
β ^ 0.18383 2 0.18649 4 0.18863 7 0.15642 1 0.18705 6 0.18606 3 0.18699 5
MSEs α ^ 0.0084 2 0.00899 5 0.01058 7 0.00723 1 0.00946 6 0.00875 3 0.00887 4
λ ^ 0.00255 2 0.00302 5 0.00335 7 0.00249 1 0.00331 6 0.00269 3 0.00296 4
β ^ 0.03572 2 0.03653 4 0.03699 6 0.03062 1 0.03702 7 0.03623 3 0.03657 5
MREs α ^ 0.09987 2 0.10314 5 0.1118 7 0.09181 1 0.10521 6 0.10106 3 0.10186 4
λ ^ 0.07975 2 0.08831 5 0.09176 6 0.07794 1 0.09191 7 0.08243 3 0.08714 4
β ^ 0.07353 2 0.0746 4 0.07545 7 0.06257 1 0.07503 6 0.07443 3 0.0748 5
R a n k s 18 2 42 5 60 7 9 1 57 6 27 3 39 4
200BIAS α ^ 0.06214 2 0.06538 5 0.06551 6 0.05398 1 0.06632 7 0.06473 3 0.06479 4
λ ^ 0.02942 2 0.03183 3 0.03487 7 0.02814 1 0.03414 6 0.03203 4 0.03345 5
β ^ 0.17817 2 0.18069 4 0.18661 7 0.13861 1 0.18611 6 0.18015 3 0.1837 5
MSEs α ^ 0.00565 2 0.00634 6 0.00632 5 0.00451 1 0.00654 7 0.00613 3 0.00626 4
λ ^ 0.00138 2 0.00158 3 0.00189 7 0.00125 1 0.00178 6 0.00161 4 0.00172 5
β ^ 0.03426 2 0.03489 4 0.03644 7 0.0271 1 0.03639 6 0.03482 3 0.03564 5
MREs α ^ 0.08285 2 0.08717 5 0.08735 6 0.07197 1 0.08842 7 0.0863 3 0.08638 4
λ ^ 0.05884 2 0.06365 3 0.06973 7 0.05629 1 0.06828 6 0.06406 4 0.06689 5
β ^ 0.07127 2 0.07228 4 0.07465 7 0.05544 1 0.07445 6 0.07206 3 0.07348 5
R a n k s 18 2 37 4 59 7 9 1 57 6 30 3 42 5
350BIAS α ^ 0.05629 2 0.06045 7 0.05957 3 0.04776 1 0.06003 6 0.05989 5 0.05968 4
λ ^ 0.02347 2 0.02658 5 0.02796 6 0.02201 1 0.02866 7 0.02574 3 0.02654 4
β ^ 0.17262 2 0.17817 5 0.18349 6 0.11708 1 0.18369 7 0.17465 3 0.17787 4
MSEs α ^ 0.00435 2 0.00492 4 0.00501 7 0.00344 1 0.00497 6 0.00494 5 0.00486 3
λ ^ 0.00084 2 0.00107 5 0.00119 6 0.00075 1 0.00123 7 0.00101 3 0.00104 4
β ^ 0.03267 2 0.03419 5 0.0356 6 0.02274 1 0.03562 7 0.0333 3 0.03413 4
MREs α ^ 0.07506 2 0.0806 7 0.07943 3 0.06368 1 0.08003 6 0.07986 5 0.07957 4
λ ^ 0.04693 2 0.05315 5 0.05593 6 0.04402 1 0.05731 7 0.05148 3 0.05308 4
β ^ 0.06905 2 0.07127 5 0.0734 6 0.04683 1 0.07348 7 0.06986 3 0.07115 4
R a n k s 18 2 48 5 49 6 9 1 60 7 33 3 35 4
Table 7. Partial and overall ranks of all estimation methods for the PMKE distribution.
Table 7. Partial and overall ranks of all estimation methods for the PMKE distribution.
ParameternMLEsADEsCVMEsMPSEsLSEsPCEsWLSEs
α = 0.25 , λ = 0.5 , β = 0.75 201372564
50135.5275.54
1001372564
2001362754
3502351764
α = 1.5 , λ = 0.75 , β = 0.5 206.536.514.54.52
506251743
1005371462
2005.515.52743
3502361745
α = 0.5 , λ = 1.5 , β = 1.5 20624.51374.5
501462.572.55
1001472.562.55
2001362745
3502571634
α = 0.75 , λ = 1.5 , β = 0.25 204135672
5042.551672.5
1003261574
2002361574
3502351674
α = 0.75 , λ = 0.5 , β = 2.5 204571623
502.52.56174.54.5
1002571634
2002471635
3502561734
∑ Ranks 69.57814938149.5120.595.5
Overall Rank 2361754
Table 8. Simulation results for the PMKE distribution with ( α = 0.5 , λ = 0.25 , β = 0.75 ) and ( α = 1.5 , λ = 0.75 , β = 0.5 ).
Table 8. Simulation results for the PMKE distribution with ( α = 0.5 , λ = 0.25 , β = 0.75 ) and ( α = 1.5 , λ = 0.75 , β = 0.5 ).
nEst.Est. Par.BSEBLNBGEBSEBLNBGE
α = 0.5 , λ = 0.25 , β = 0.75 α = 1.5 , λ = 0.75 , β = 0.5
20BIAS α ^ 0.0868 3 0.08283 2 0.07946 1 0.17885 2 0.1744 1 0.17938 3
λ ^ 0.19586 3 0.16718 2 0.15811 1 0.03939 1 0.03963 2.5 0.03963 2.5
β ^ 0.26146 2 0.26102 1 0.26858 3 0.04281 3 0.04015 1 0.04033 2
MSEs α ^ 0.01081 3 0.00813 2 0.00755 1 0.09086 3 0.07436 1 0.07971 2
λ ^ 0.07729 3 0.04846 2 0.04357 1 0.00185 3 0.00184 1.5 0.00184 1.5
β ^ 0.08043 3 0.07067 1 0.07464 2 0.0025 3 0.00203 1 0.00205 2
MREs α ^ 0.09109 1 0.33131 3 0.31784 2 0.03223 1 0.11626 2 0.11959 3
λ ^ 0.08534 1 0.33436 3 0.31622 2 0.05182 1 0.05284 2.5 0.05284 2.5
β ^ 0.05723 1 0.34802 2 0.3581 3 0.08 1 0.08029 2 0.08066 3
R a n k s 20 3 18 2 16 1 18 2 14.5 1 21.5 3
50BIAS α ^ 0.06153 3 0.05668 2 0.05495 1 0.16494 3 0.16099 1 0.16335 2
λ ^ 0.13328 3 0.11735 2 0.11356 1 0.0313 1 0.03149 3 0.03148 2
β ^ 0.15785 2 0.15435 1 0.15831 3 0.04167 3 0.03816 2 0.038 1
MSEs α ^ 0.00613 3 0.00467 2 0.00442 1 0.06401 3 0.05357 1 0.05558 2
λ ^ 0.03111 3 0.02073 2 0.01948 1 0.00132 2 0.00132 2 0.00132 2
β ^ 0.034 3 0.02787 1 0.02925 2 0.00258 3 0.002 2 0.00197 1
MREs α ^ 0.09002 1 0.22672 3 0.21981 2 0.02861 1 0.10733 2 0.1089 3
λ ^ 0.08316 1 0.2347 3 0.22713 2 0.04079 1 0.04198 2.5 0.04198 2.5
β ^ 0.05429 1 0.2058 2 0.21108 3 0.07513 1 0.07632 3 0.07601 2
R a n k s 20 3 18 2 16 1 18 2 18.5 3 17.5 1
100BIAS α ^ 0.04085 3 0.03729 2 0.03653 1 0.12322 3 0.11728 1 0.11829 2
λ ^ 0.08381 3 0.07405 2 0.07252 1 0.02522 1 0.02546 2.5 0.02546 2.5
β ^ 0.09564 3 0.09046 1 0.09208 2 0.03416 3 0.03141 2 0.03127 1
MSEs α ^ 0.00272 3 0.00207 2 0.00198 1 0.0328 3 0.02692 1 0.02757 2
λ ^ 0.01268 3 0.00874 2 0.00834 1 0.00092 1 0.00093 2.5 0.00093 2.5
β ^ 0.01381 3 0.01086 1 0.01124 2 0.0019 3 0.0015 2 0.00147 1
MREs α ^ 0.07858 1 0.14915 3 0.14612 2 0.02918 1 0.07818 2 0.07886 3
λ ^ 0.07506 1 0.1481 3 0.14504 2 0.03385 1 0.03394 2.5 0.03394 2.5
β ^ 0.05148 1 0.12061 2 0.12278 3 0.06197 1 0.06283 3 0.06254 2
R a n k s 21 3 18 2 15 1 17 1 18.5 2.5 18.5 2.5
200BIAS α ^ 0.0263 3 0.02379 2 0.02357 1 0.08503 3 0.07831 1 0.07864 2
λ ^ 0.05495 3 0.04845 2 0.04819 1 0.01865 1 0.01879 2.5 0.01879 2.5
β ^ 0.05416 3 0.04784 1 0.04826 2 0.02693 3 0.02625 2 0.0262 1
MSEs α ^ 0.00115 3 0.0009 2 0.00088 1 0.01516 3 0.01255 1 0.0127 2
λ ^ 0.00479 3 0.00357 2 0.00352 1 0.00057 2 0.00057 2 0.00057 2
β ^ 0.00468 3 0.00359 1 0.00365 2 0.00125 3 0.0011 2 0.00109 1
MREs α ^ 0.07635 1 0.09517 3 0.09428 2 0.03063 1 0.0522 2 0.05243 3
λ ^ 0.07401 1 0.09689 3 0.09639 2 0.02443 1 0.02505 2.5 0.02505 2.5
β ^ 0.05199 1 0.06378 2 0.06435 3 0.04583 1 0.05251 3 0.05241 2
R a n k s 21 3 18 2 15 1 18 2 18 2 18 2
350BIAS α ^ 0.01921 3 0.01808 2 0.01807 1 0.08388 3 0.08073 1 0.08102 2
λ ^ 0.04376 3 0.04079 2 0.04069 1 0.01651 1 0.01657 2.5 0.01657 2.5
β ^ 0.04661 3 0.04486 1 0.04492 2 0.02716 3 0.02658 2 0.02645 1
MSEs α ^ 0.00058 3 0.0005 1.5 0.0005 1.5 0.01486 3 0.01288 1 0.01303 2
λ ^ 0.00299 3 0.00235 2 0.00233 1 0.0004 2 0.0004 2 0.0004 2
β ^ 0.00344 3 0.00293 1.5 0.00293 1.5 0.00154 3 0.00127 2 0.00124 1
MREs α ^ 0.07056 1 0.0723 3 0.07226 2 0.02957 1 0.05382 2 0.05401 3
λ ^ 0.06574 1 0.08158 3 0.08139 2 0.0218 1 0.0221 2.5 0.0221 2.5
β ^ 0.04356 1 0.05982 2 0.0599 3 0.04325 1 0.05316 3 0.0529 2
R a n k s 21 3 18 2 15 1 18 2 18 2 18 2
Table 9. Simulation results for the PMKE distribution with ( α = 0.5 , λ = 1.5 , β = 1.5 ) and ( α = 0.75 , λ = 1.5 , β = 0.25 ).
Table 9. Simulation results for the PMKE distribution with ( α = 0.5 , λ = 1.5 , β = 1.5 ) and ( α = 0.75 , λ = 1.5 , β = 0.25 ).
nEst.Est. Par.BSEBLNBGEBSEBLNBGE
α = 0.5 , λ = 1.5 , β = 1.5 α = 0.75 , λ = 1.5 , β = 0.25
20BIAS α ^ 0.04431 3 0.04253 1 0.04267 2 0.06041 3 0.05806 1 0.05882 2
λ ^ 0.06081 3 0.0582 1 0.05825 2 0.06484 3 0.06182 1 0.0619 2
β ^ 0.14282 3 0.13908 1 0.14166 2 0.02584 3 0.02558 2 0.0255 1
MSEs α ^ 0.0028 3 0.00247 1 0.00249 2 0.00685 3 0.0055 1 0.00577 2
λ ^ 0.00625 3 0.0052 1 0.00522 2 0.0081 3 0.00677 1 0.00683 2
β ^ 0.04973 3 0.03877 1 0.04098 2 0.00102 3 0.00094 2 0.00093 1
MREs α ^ 0.07672 1 0.08506 2 0.08533 3 0.05682 1 0.07742 2 0.07843 3
λ ^ 0.03137 1 0.0388 2 0.03883 3 0.03255 1 0.04121 2 0.04127 3
β ^ 0.03024 1 0.09272 2 0.09444 3 0.08948 1 0.10231 3 0.102 2
R a n k s 21 2.5 12 1 21 2.5 21 3 15 1 18 2
50BIAS α ^ 0.03437 3 0.03281 1 0.03283 2 0.04877 3 0.04694 1 0.04713 2
λ ^ 0.0516 3 0.05087 1.5 0.05087 1.5 0.05331 3 0.05163 1.5 0.05163 1.5
β ^ 0.0836 3 0.07722 1 0.07783 2 0.02281 3 0.02266 2 0.02263 1
MSEs α ^ 0.00176 3 0.00154 1.5 0.00154 1.5 0.00387 3 0.00332 1 0.00337 2
λ ^ 0.00383 3 0.00339 1.5 0.00339 1.5 0.00394 3 0.00337 1.5 0.00337 1.5
β ^ 0.02047 3 0.01759 1 0.01824 2 0.00082 3 0.00078 1.5 0.00078 1.5
MREs α ^ 0.06135 1 0.06563 2 0.06566 3 0.05437 1 0.06259 2 0.06284 3
λ ^ 0.02958 1 0.03391 2.5 0.03391 2.5 0.029 1 0.03442 2.5 0.03442 2.5
β ^ 0.03096 1 0.05148 2 0.05189 3 0.08374 1 0.09062 3 0.09051 2
R a n k s 21 3 14 1 19 2 21 3 16 1 17 2
100BIAS α ^ 0.02929 3 0.02892 1.5 0.02892 1.5 0.04333 3 0.0425 1 0.04254 2
λ ^ 0.048 1 0.0481 2.5 0.0481 2.5 0.04399 3 0.04308 1.5 0.04308 1.5
β ^ 0.05484 3 0.05173 1 0.05178 2 0.01975 3 0.01954 2 0.01953 1
MSEs α ^ 0.0012 3 0.00115 1.5 0.00115 1.5 0.0025 3 0.0023 1.5 0.0023 1.5
λ ^ 0.00281 3 0.00269 1.5 0.00269 1.5 0.00267 3 0.00242 1.5 0.00242 1.5
β ^ 0.00486 3 0.0042 1 0.00421 2 0.00056 3 0.00055 1.5 0.00055 1.5
MREs α ^ 0.05782 1 0.05785 3 0.05784 2 0.05264 1 0.05666 2 0.05672 3
λ ^ 0.02928 1 0.03206 2.5 0.03206 2.5 0.028 1 0.02872 2.5 0.02872 2.5
β ^ 0.02975 1 0.03449 2 0.03452 3 0.07612 1 0.07816 3 0.0781 2
R a n k s 19 3 16.5 1 18.5 2 21 3 16.5 1.5 16.5 1.5
200BIAS α ^ 0.02154 1 0.02155 2.5 0.02155 2.5 0.03753 1 0.03761 2.5 0.03761 2.5
λ ^ 0.04265 1 0.04286 2.5 0.04286 2.5 0.04256 1 0.0427 2.5 0.0427 2.5
β ^ 0.04503 3 0.0439 1 0.04391 2 0.01486 1 0.0149 2.5 0.0149 2.5
MSEs α ^ 0.00069 3 0.00068 1.5 0.00068 1.5 0.00174 3 0.00172 1.5 0.00172 1.5
λ ^ 0.00217 3 0.00212 1.5 0.00212 1.5 0.00218 3 0.00213 1.5 0.00213 1.5
β ^ 0.00276 3 0.00255 1.5 0.00255 1.5 0.00034 2 0.00034 2 0.00034 2
MREs α ^ 0.04167 1 0.04309 2.5 0.04309 2.5 0.04721 1 0.05015 2.5 0.05015 2.5
λ ^ 0.02792 1 0.02857 2.5 0.02857 2.5 0.02769 1 0.02847 2.5 0.02847 2.5
β ^ 0.02942 3 0.02926 1 0.02927 2 0.05764 1 0.05962 2.5 0.05962 2.5
R a n k s 19 3 16.5 1 18.5 2 14 1 20 2.5 20 2.5
350BIAS α ^ 0.0203 1 0.02037 2.5 0.02037 2.5 0.03526 1 0.03547 2.5 0.03547 2.5
λ ^ 0.03934 1 0.03967 2.5 0.03967 2.5 0.03949 1 0.03974 2.5 0.03974 2.5
β ^ 0.04524 1 0.04536 2.5 0.04536 2.5 0.01203 1 0.01207 2.5 0.01207 2.5
MSEs α ^ 0.00062 2 0.00062 2 0.00062 2 0.00158 3 0.00157 1.5 0.00157 1.5
λ ^ 0.00187 3 0.00186 1.5 0.00186 1.5 0.00191 3 0.00188 1.5 0.00188 1.5
β ^ 0.00251 3 0.00243 1.5 0.00243 1.5 0.00021 2 0.00021 2 0.00021 2
MREs α ^ 0.03947 1 0.04075 2.5 0.04075 2.5 0.04727 1 0.0473 2.5 0.0473 2.5
λ ^ 0.02616 1 0.02645 2.5 0.02645 2.5 0.02523 1 0.02649 2.5 0.02649 2.5
β ^ 0.02953 1 0.03024 2.5 0.03024 2.5 0.04659 1 0.0483 3 0.04829 2
R a n k s 14 1 20 2.5 20 2.5 14 1 20.5 3 19.5 2
Table 10. Partial and overall ranks of all estimation methods for the PMKE distribution.
Table 10. Partial and overall ranks of all estimation methods for the PMKE distribution.
ParameternBSEBLNBGE
α = 0.5 , λ = 0.25 , β = 0.75 20321
50321
100321
200321
350321
α = 1.5 , λ = 0.75 , β = 0.5 20213
50231
10012.52.5
200222
350222
α = 0.5 , λ = 1.5 , β = 1.5 202.512.5
50312
100312
200312
35012.52.5
α = 0.75 , λ = 1.5 , β = 0.25 20312
50312
10031.51.5
20012.52.5
350132
∑ Ranks 47.53636.5
Overall Rank 31.02.0
Table 11. Discrimination measures of the PNKE model and other competing models.
Table 11. Discrimination measures of the PNKE model and other competing models.
Model ^ AIKCAKIBAIHAQUIANDACRVMIKOSMp-ValueEst. Parameters
PMKE77.7073161.415162.081166.481163.2460.1001260.01320350.05298240.999873 α ^ = 0.273225 ( 0.121243 )
λ ^ = 7.55291 × 10 10 ( 6.62807 × 10 9 )
β ^ = 10.3448 ( 4.21646 )
MKE81.2693166.539166.863169.916167.760.4996720.06352240.1023860.795807 α ^ = 2.92823 ( 0.397681 )
λ ^ = 0.0993581 ( 0.00401557 )
APE88.992181.984182.308185.362183.2051.47590.2249380.1516280.316583 α ^ = 211389 ( 712556 )
a ^ = 0.479077 ( 0.0539462 )
APExE86.9505179.901180.568184.968181.7331.070460.1376370.1307740.500765 α ^ = 35.6617 ( 54.329 )
a ^ = 0.579806 ( 0.0712686 )
c ^ = 7.13943 ( 3.70158 )
BE87.4599180.92181.586185.986182.7521.359760.2077060.1278330.530394 λ ^ = 0.0576468 ( 0.00181934 )
a ^ = 7.75266 ( 2.67815 )
b ^ = 18.349 ( 1.70836 )
E113.319228.639228.744230.327229.2498.600521.737030.3631080.0000525 λ ^ = 0.159936 ( 0.0252881 )
ExE90.1427184.285184.61187.663185.5071.747810.2800480.1541960.297513 α ^ = 9.51462 ( 33.3448 )
λ ^ = 0.449842 ( 0.0025389 )
GExE87.8425181.685182.352186.752183.5171.422030.2187480.1310570.497955 λ ^ = 0.10895 ( 0.115928 )
α ^ = 10.5505 ( 3.66103 )
δ ^ = 8.11926 ( 10.1673 )
GLLE86.6504177.301177.625180.679178.5220.958740.09948040.124110.568832 α ^ = 3.63222 ( 0.495438 )
λ ^ = 0.110877 ( 0.00598631 )
HETE80.4739166.948167.614172.014168.780.3096640.04181370.08907640.908766 k ^ = 0.133305 ( 0.129544 )
λ ^ = 5.07541 ( 4.74335 )
α ^ = 857.376 ( 973.017 )
IPLE89.1039184.208184.874189.274186.041.257290.1325120.1494490.33342 α ^ = 22.5789 ( 17.1289 )
β ^ = 0.150774 ( 0.113026 )
λ ^ = 0.912785 ( 0.188307 )
KE83.1772172.354173.021177.421174.1860.7293480.09346650.1096910.721617 β ^ = 4.26681 ( 0.730358 )
λ ^ = 374.878 ( 516.677 )
α ^ = 0.04161 ( 0.0213235 )
LNE91.8827187.765188.09191.143188.9873.491890.6722970.2267980.0326519 β ^ = 1.77494 × 10 28 ( 0.0702828 )
θ ^ = 0.0467047 ( 0.0151681 )
LE86.6504177.301177.625180.679178.5220.958740.09948040.124110.568832 α ^ = 3.63222 ( 0.495438 )
λ ^ = 0.110877 ( 0.00598631 )
MOE83.6026171.205171.529174.583172.4260.5489810.05896140.09128430.892799 α ^ = 285.719 ( 240.378 )
a ^ = 0.883713 ( 0.120305 )
MOLE λ ^ = 0.965429 ( 0.988828 )
θ ^ = 290.349 ( 246.823 )
88.6703183.341184.007188.407185.1721.411120.2073810.1448690.370713 α ^ = 8.54642 ( 3.17075 )
TGE λ ^ = 0.650755 ( 0.256039 )
θ ^ = 0.500041 ( 0.0621707 )
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Afify, A.Z.; Gemeay, A.M.; Alfaer, N.M.; Cordeiro, G.M.; Hafez, E.H. Power-Modified Kies-Exponential Distribution: Properties, Classical and Bayesian Inference with an Application to Engineering Data. Entropy 2022, 24, 883. https://doi.org/10.3390/e24070883

AMA Style

Afify AZ, Gemeay AM, Alfaer NM, Cordeiro GM, Hafez EH. Power-Modified Kies-Exponential Distribution: Properties, Classical and Bayesian Inference with an Application to Engineering Data. Entropy. 2022; 24(7):883. https://doi.org/10.3390/e24070883

Chicago/Turabian Style

Afify, Ahmed Z., Ahmed M. Gemeay, Nada M. Alfaer, Gauss M. Cordeiro, and Eslam H. Hafez. 2022. "Power-Modified Kies-Exponential Distribution: Properties, Classical and Bayesian Inference with an Application to Engineering Data" Entropy 24, no. 7: 883. https://doi.org/10.3390/e24070883

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop