Chaotic Pulse-Shaping Filter Based on Root-Raised-Cosine Division
Abstract
:1. Introduction
2. Backgrounds
3. RRC-Divided Chaotic Filter
3.1. RRC-Division Scheme
3.2. Hybrid Dynamical System
3.2.1. Topological Conjugation
- ;
- almost everywhere for ;
- , where ;
- .
3.2.2. Dynamic Behavior
4. Wireless Communication System Using Chaotic Filter
4.1. Transmitter and Receiver
4.2. Threshold Calculation
4.3. Performance Analysis
4.3.1. BER Performance Analysis
- AWGN channel
- Multi-path channel
4.3.2. Computational Complexity Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fu, Y.; Li, X.; Li, Y.; Yang, W.; Song, H. Chaos M-ary modulation and demodulation method based on Hamilton oscillator and its application in communication. Chaos Interdiscip. J. Nonlinear Sci. 2013, 23, 013111. [Google Scholar] [CrossRef] [PubMed]
- Yasser, I.; Mohamed, M.A.; Samra, A.S.; Khalifa, F. A chaotic-based encryption/decryption framework for secure multimedia communications. Entropy 2020, 22, 1253. [Google Scholar] [CrossRef] [PubMed]
- Abd, M.H.; Tahir, F.R.; Al-Suhail, G.A.; Pham, V.T. An adaptive observer synchronization using chaotic time-delay system for secure communication. Nonlinear Dyn. 2017, 90, 2583–2598. [Google Scholar] [CrossRef]
- Tao, Y.; Fang, Y.; Ma, H.; Mumtaz, S.; Guizani, M. Multi-carrier DCSK With Hybrid Index Modulation: A New Perspective on Frequency-Index-Aided Chaotic Communication. IEEE Trans. Commun. 2022, 70, 3760–3773. [Google Scholar] [CrossRef]
- Lu, T.; Wang, H.; Ji, Y. Wideband complex-enhanced bidirectional phase chaotic secure communication with time-delay signature concealment. Chaos Interdiscip. J. Nonlinear Sci. 2020, 30, 093138. [Google Scholar] [CrossRef]
- Chen, P.; Shi, L.; Fang, Y.; Cai, G.; Wang, L.; Chen, G. A coded DCSK modulation system over Rayleigh fading channels. IEEE Trans. Commun. 2018, 66, 3930–3942. [Google Scholar] [CrossRef]
- IEEE Standard 802.15.6; IEEE Standard for Local and Metropolitan Area Networks Part 15.6: Wireless Body Area Networks. IEEE: Piscatway, NJ, USA, 2012.
- Yang, Z.; Ke, J.; Zhuge, Q.; Hu, W.; Yi, L. Coherent chaotic optical communication of 30 Gb/s over 340-km fiber transmission via deep learning. Opt. Lett. 2022, 47, 2650–2653. [Google Scholar] [CrossRef]
- Yao, J.L.; Sun, Y.Z.; Ren, H.P.; Grebogi, C. Experimental wireless communication using chaotic baseband waveform. IEEE Trans. Veh. Technol. 2018, 68, 578–591. [Google Scholar] [CrossRef] [Green Version]
- Beal, A.N.; Cohen, S.D.; Syed, T.M. Generating and detecting solvable chaos at radio frequencies with consideration to multi-user ranging. Sensors 2020, 20, 774. [Google Scholar] [CrossRef] [Green Version]
- Ren, H.P.; Baptista, M.S.; Grebogi, C. Wireless communication with chaos. Phys. Rev. Lett. 2013, 110, 184101. [Google Scholar] [CrossRef] [PubMed]
- Corron, N.J.; Blakely, J.N. Chaos in optimal communication waveforms. Proc. R. Soc. A Math. Phys. Eng. Sci. 2015, 471, 20150222. [Google Scholar] [CrossRef]
- Bai, C.; Ren, H.P.; Zheng, W.Y.; Grebogi, C. Radio-wave communication with chaos. IEEE Access 2020, 8, 167019–167026. [Google Scholar] [CrossRef]
- Ren, H.P.; Bai, C.; Grebogi, C. Chaotic shape-forming filter and corresponding matched filter in wireless communication. In Advances on Nonlinear Dynamics of Electronic Systems; World Scientific: Singapore, 2019; pp. 36–40. [Google Scholar]
- Ren, H.P.; Guo, S.L.; Bai, C.; Zhao, X.H. Cross correction and chaotic shape-forming filter based quadrature multi-carrier differential chaos shift keying communication. IEEE Trans. Veh. Technol. 2021, 70, 12675–12690. [Google Scholar] [CrossRef]
- Khedkar, A.; Murugan, M.; Mate, A.A. ICI cancellation using Raised Cosine windowing in OFDM system. In Proceedings of the 2014 Annual IEEE India Conference (INDICON), Pune, India, 11–13 December 2014; pp. 1–4. [Google Scholar]
- Abdel-Atty, H.M.; Raslan, W.A.; Khalil, A.T. Evaluation and Analysis of FBMC/OQAM Systems Based on Pulse Shaping Filters. IEEE Access 2020, 8, 55750–55772. [Google Scholar] [CrossRef]
- Arisaka, M.; Sugiura, S. Energy-Versus-Bandwidth-Efficiency Tradeoff in Spatially Modulated Massive MIMO Downlink. IEEE Wirel. Commun. Lett. 2019, 8, 197–200. [Google Scholar] [CrossRef]
- Bačić, I.; Salopek, T.; Malarić, K. Digital filter analysis in communication channels. In Proceedings of the ELMAR, Zadar, Croatia, 14–16 September 2011; pp. 357–360. [Google Scholar]
- Bandari, S.K.; Mani, V.; Drosopoulos, A. Performance analysis of GFDM in various fading channels. COMPEL Int. J. Comput. Math. Electr. Electron. Eng. 2016, 35, 225–244. [Google Scholar] [CrossRef]
- Yao, J.L.; Li, C.; Ren, H.P.; Grebogi, C. Chaos-based wireless communication resisting multipath effects. Phys. Rev. E 2017, 96, 032226. [Google Scholar] [CrossRef] [Green Version]
- Ren, H.P.; Yin, H.P.; Bai, C.; Yao, J.L. Performance improvement of chaotic baseband wireless communication using echo state network. IEEE Trans. Commun. 2020, 68, 6525–6536. [Google Scholar] [CrossRef]
- Ren, H.P.; Bai, C.; Liu, J.; Baptista, M.S.; Grebogi, C. Experimental validation of wireless communication with chaos. Chaos Interdiscip. J. Nonlinear Sci. 2016, 26, 083117. [Google Scholar] [CrossRef] [Green Version]
- Milosavljevic, M.S.; Corron, N.J.; Blakely, J.N. Optimal communications with infinite impulse response matched filters. Chaos Solitons Fractals 2020, 138, 109822. [Google Scholar] [CrossRef]
- Döttling, M.; Mohr, W.; Osseiran, A. Radio Technologies and Concepts for IMT-Advanced; John Wiley & Sons: Hoboken, NJ, USA, 2009. [Google Scholar]
- Blakely, J.N.; Hahs, D.W.; Corron, N.J. Communication waveform properties of an exact folded-band chaotic oscillator. Phys. D Nonlinear Phenom. 2013, 263, 99–106. [Google Scholar] [CrossRef]
- Xu, L.; Chen, F.; Ding, F.; Alsaedi, A.; Hayat, T. Hierarchical recursive signal modeling for multifrequency signals based on discrete measured data. Int. J. Adapt. Control Signal Process. 2021, 35, 676–693. [Google Scholar] [CrossRef]
- Kobayashi, R.T.; Ciriaco, F.; Abrao, T. Efficient near-optimum detectors for large MIMO systems under correlated channels. Wirel. Pers. Commun. 2015, 83, 1287–1311. [Google Scholar] [CrossRef]
Method | Pulse Shaping | Matched Filtering | Decoding |
---|---|---|---|
Root-raised-cosine (RRC) with minimum mean square error (MMSE) | |||
Chaotic baseband wireless communication system (CBWCS) | |||
Proposed method |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, X.; Wang, Z.; Huang, Q. Chaotic Pulse-Shaping Filter Based on Root-Raised-Cosine Division. Entropy 2023, 25, 136. https://doi.org/10.3390/e25010136
Tian X, Wang Z, Huang Q. Chaotic Pulse-Shaping Filter Based on Root-Raised-Cosine Division. Entropy. 2023; 25(1):136. https://doi.org/10.3390/e25010136
Chicago/Turabian StyleTian, Xiaosi, Zulin Wang, and Qin Huang. 2023. "Chaotic Pulse-Shaping Filter Based on Root-Raised-Cosine Division" Entropy 25, no. 1: 136. https://doi.org/10.3390/e25010136
APA StyleTian, X., Wang, Z., & Huang, Q. (2023). Chaotic Pulse-Shaping Filter Based on Root-Raised-Cosine Division. Entropy, 25(1), 136. https://doi.org/10.3390/e25010136