A Comprehensive Numerical Model for Reservoir-Induced Earthquake Risk Assessment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Poroelastic Model
2.2. Coulomb Stress and Seismic Risk Model
3. Results
3.1. Numerical Results
3.2. Application to Reservoir-Triggered Earthquakes
4. Discussion
4.1. Fault Risk Tendency
4.2. Simplified Model Setup
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Durá-Gómez, I.; Talwani, P. Hydromechanics of the Koyna–Warna Region, India. Pure Appl. Geophys. 2010, 167, 183–213. [Google Scholar] [CrossRef]
- Gupta, H.K. A review of recent studies of triggered earthquakes by artificial water reservoirs with special emphasis on earthquakes in Koyna, India. Earth Sci. Rev. 2002, 58, 279–310. [Google Scholar] [CrossRef]
- Herath, P.; Attanayake, J.; Gahalaut, K. A reservoir induced earthquake swarm in the Central Highlands of Sri Lanka. Sci. Rep. 2022, 12, 18251. [Google Scholar] [CrossRef] [PubMed]
- McGarr, A.; Simpson, D.; Seeber, L.; Lee, W. Case histories of induced and triggered seismicity. Int. Geophys. Ser. 2002, 81, 647–664. [Google Scholar]
- Ozsarac, V.; Brunesi, E.; Nascimbene, R. Earthquake-induced nonlinear sloshing response of above-ground steel tanks with damped or undamped floating roof. Soil Dyn. Earthq. Eng. 2021, 144, 106673. [Google Scholar] [CrossRef]
- Chen, L.; Talwani, P. Mechanism of Initial Seismicity Following Impoundment of the Monticello Reservoir, South Carolina. Bull. Seismol. Soc. Am. 2001, 91, 1582–1594. [Google Scholar] [CrossRef]
- Roeloffs, E.A. Fault stability changes induced beneath a reservoir with cyclic variations in water level. J. Geophys. Res. Solid Earth 1988, 93, 2107–2124. [Google Scholar] [CrossRef]
- Talwani, P. On the Nature of Reservoir-induced Seismicity. Pure Appl. Geophys. 1997, 150, 473–492. [Google Scholar] [CrossRef]
- Bell, M.L.; Nur, A. Strength changes due to reservoir-induced pore pressure and stresses and application to Lake Oroville. J. Geophys. Res. Solid Earth 1978, 83, 4469–4483. [Google Scholar] [CrossRef]
- Talwani, P.; Chen, L.; Gahalaut, K. Seismogenic permeability, ks. J. Geophys. Res. Solid Earth 2007, 112, B07309. [Google Scholar] [CrossRef]
- Gahalaut, K.; Tuan, T.A.; Purnachandra Rao, N. Rapid and delayed earthquake triggering by the Song Tranh 2 reservoir, Vietnam. Bull. Seismol. Soc. Am. 2016, 106, 2389–2394. [Google Scholar] [CrossRef]
- Do Nascimento, A.F.; Cowie, P.A.; Lunn, R.J.; Pearce, R.G. Spatio-temporal evolution of induced seismicity at Açu reservoir, NE Brazil. Geophys. J. Int. 2004, 158, 1041–1052. [Google Scholar] [CrossRef]
- Michas, G.; Pavlou, K.; Vallianatos, F.; Drakatos, G. Correlation Between Seismicity and Water Level Fluctuations in the Polyphyto Dam, North Greece. Pure Appl. Geophys. 2020, 177, 3851–3870. [Google Scholar] [CrossRef]
- Cheng, H.; Zhang, H.; Shi, Y. High-Resolution Numerical Analysis of the Triggering Mechanism of ML5.7 Aswan Reservoir Earthquake Through Fully Coupled Poroelastic Finite Element Modeling. Pure Appl. Geophys. 2016, 173, 1593–1605. [Google Scholar] [CrossRef]
- Huang, Q. Seismicity changes prior to the Ms8.0 Wenchuan earthquake in Sichuan, China. Geophys. Res. Lett. 2008, 35, L23308. [Google Scholar] [CrossRef]
- Lei, X.; Ma, S.; Wen, X.; Su, J.; Du, F. Integrated analysis of stress and regional seismicity by surface loading—A case study of Zipingpu reservoir. Seismol. Geol. 2008, 30, 1046–1064. [Google Scholar]
- Tao, W.; Masterlark, T.; Shen, Z.K.; Ronchin, E.; Zhang, Y. Triggering effect of the Zipingpu Reservoir on the 2008 M(w)7.9 Wenchuan, China, Earthquake due to poroelastic coupling. Chin. J. Geophys. 2014, 57, 3318–3331. [Google Scholar]
- Deng, K.; Zhou, S.Y.; Wang, R.; Robinson, R.; Zhao, C.P.; Cheng, W.Z. Evidence that the 2008 M-w 7.9 Wenchuan Earthquake Could Not Have Been Induced by the Zipingpu Reservoir. Bull. Seism. Soc. Am. 2010, 100, 2805–2814. [Google Scholar] [CrossRef]
- Cheng, H.; Zhang, H.; Shi, Y. Comprehensive understanding of the Zipingpu reservoir to the Ms8. 0 Wenchuan earthquake. Chin. J. Geophys. 2015, 58, 387–403. [Google Scholar]
- Tao, W.; Masterlark, T.; Shen, Z.K.; Ronchin, E. Impoundment of the Zipingpu reservoir and triggering of the 2008 Mw 7.9 Wenchuan earthquake, China. J. Geophys. Res. Solid Earth. 2015, 120, 7033–7047. [Google Scholar] [CrossRef]
- Zhu, J.; Sun, Y. Numerical simulation of the effect of water storage on seismic activity in Dagangshan Reservoir, Sichuan, China. Chin. J. Geophys. 2022, 65, 3930–3943. [Google Scholar] [CrossRef]
- Deng, K.; Liu, Y.; Harrington, R.M. Poroelastic stress triggering of the December 2013 Crooked Lake, Alberta, induced seismicity sequence. Geophys. Res. Lett. 2016, 43, 8482–8491. [Google Scholar] [CrossRef]
- Deng, K.; Liu, Y.; Chen, X. Correlation Between Poroelastic Stress Perturbation and Multidisposal Wells Induced Earthquake Sequence in Cushing, Oklahoma. Geophys. Res. Lett. 2020, 47, e2020GL089366. [Google Scholar] [CrossRef]
- Deichmann, N.; Giardini, D. Earthquakes induced by the stimulation of an enhanced geothermal system below Basel (Switzerland). Seismol. Res. Lett. 2009, 80, 784–798. [Google Scholar] [CrossRef]
- Rundle, J.B.; Turcotte, D.L.; Donnellan, A.; Grant Ludwig, L.; Luginbuhl, M.; Gong, G. Nowcasting earthquakes. Earth Space Sci. 2016, 3, 480–486. [Google Scholar] [CrossRef]
- Luginbuhl, M.; Rundle, J.B.; Hawkins, A.; Turcotte, D.L. Nowcasting Earthquakes: A Comparison of Induced Earthquakes in Oklahoma and at the Geysers, California. Pure Appl. Geophys. 2018, 175, 49–65. [Google Scholar] [CrossRef]
- Luginbuhl, M.; Rundle, J.B.; Turcotte, D.L. Natural time and nowcasting induced seismicity at the Groningen gas field in the Netherlands. Geophys. J. Int. 2018, 215, 753–759. [Google Scholar] [CrossRef]
- Varotsos, P.A.; Sarlis, N.V.; Skordas, E.S. Order Parameter and Entropy of Seismicity in Natural Time before Major Earthquakes: Recent Results. Geosciences 2022, 12, 225. [Google Scholar] [CrossRef]
- Varotsos, P.; Sarlis, N.; Skordas, E. Natural Time Analysis: The New View of Time, Part II: Advances in Disaster Prediction Using Complex Systems; Springer Nature: Berlin/Heidelberg, Germany, 2023. [Google Scholar]
- Bommer, J.J.; Dost, B.; Edwards, B.; Stafford, P.J.; van Elk, J.; Doornhof, D.; Ntinalexis, M. Developing an Application-Specific Ground-Motion Model for Induced Seismicity. Bull. Seismol. Soc. Am. 2015, 106, 158–173. [Google Scholar] [CrossRef]
- Ntinalexis, M.; Kruiver, P.P.; Bommer, J.J.; Ruigrok, E.; Rodriguez-Marek, A.; Edwards, B.; Pinho, R.; Spetzler, J.; Hernandez, E.O.; Pefkos, M.; et al. A database of ground motion recordings, site profiles, and amplification factors from the Groningen gas field in the Netherlands. Earthq. Spectra 2022, 39, 687–701. [Google Scholar] [CrossRef]
- Biot, M.A. General theory of three-dimensional consolidation. J. Appl. Phys. 1941, 12, 155–164. [Google Scholar] [CrossRef]
- Rice, J.R.; Cleary, M.P. Some basic stress diffusion solutions for fluid-saturated elastic porous media with compressible constituents. Rev. Geophys. 1976, 14, 227–241. [Google Scholar] [CrossRef]
- Wang, J.; Sinogeikin, S.V.; Inoue, T.; Bass, J.D. Elastic properties of hydrous ringwoodite at high-pressure conditions. Geophys. Res. Lett. 2006, 33, L14308. [Google Scholar] [CrossRef]
- Skempton, A.W. The pore-pressure coefficients A and B. Geotechnique 1954, 4, 143–147. [Google Scholar] [CrossRef]
- Hart, D.J.; Wang, H.F. Laboratory measurements of a complete set of poroelastic moduli for Berea sandstone and Indiana limestone. J. Geophys. Res. Solid Earth 1995, 100, 17741–17751. [Google Scholar] [CrossRef]
- King, G.C.P.; Stein, R.S.; Lin, J. Static Stress Changes and the Triggering of Earthquakes. Bull. Seism. Soc. Am. 1994, 84, 935–953. [Google Scholar]
- Rao, N.P.; Shashidhar, D. Periodic variation of stress field in the Koyna–Warna reservoir triggered seismic zone inferred from focal mechanism studies. Tectonophysics 2016, 679, 29–40. [Google Scholar] [CrossRef]
- Lizurek, G. Full Moment Tensor Inversion as a Practical Tool in Case of Discrimination of Tectonic and Anthropogenic Seismicity in Poland. Pure Appl. Geophys. 2017, 174, 197–212. [Google Scholar] [CrossRef]
- Feng, J.; Kong, J.; Kang, H.; Zhang, W.; Zhao, Y. Relocation and focal mechanism of Sichuan Luding earthquake sequence in March 2016. Prog. Geophys. 2017, 33, 451–460. [Google Scholar]
- Huang, Z.; Lian, Y.; You, L.; Chen, W. On characteristics and seismogenic faults of induced earthquake of Shuikou reservoir in Fujian province. J. Geod. Geodyn. 2007, 27, 40–44. [Google Scholar]
- Torcal, F.; Serrano, I.; Havskov, J.; Utrillas, J.L.; Valero, J. Induced seismicity around the Tous New Dam (Spain). Geophys. J. Int. 2005, 160, 144–160. [Google Scholar] [CrossRef]
- Mulargia, F.; Bizzarri, A. Anthropogenic Triggering of Large Earthquakes. Sci. Rep. 2014, 4, 6100. [Google Scholar] [CrossRef] [PubMed]
- Barbour, A.J.; Norbeck, J.H.; Rubinstein, J.L. The Effects of Varying Injection Rates in Osage County, Oklahoma, on the 2016 Mw 5.8 Pawnee Earthquake. Seismol. Res. Lett. 2017, 88, 1040–1053. [Google Scholar] [CrossRef]
- Chang, K.W.; Segall, P. Injection-induced seismicity on basement faults including poroelastic stressing. J. Geophys. Res. Solid Earth 2016, 121, 2708–2726. [Google Scholar] [CrossRef]
- Segall, P.; Lu, S. Injection-induced seismicity: Poroelastic and earthquake nucleation effects. J. Geophys. Res. Solid Earth 2015, 120, 5082–5103. [Google Scholar] [CrossRef]
- Zhao, R.; Xue, J.; Deng, K. Modelling seismicity pattern of reservoir-induced earthquakes including poroelastic stressing and nucleation effects. Geophys. J. Int. 2023, 232, 739–749. [Google Scholar] [CrossRef]
- Caine, J.S.; Evans, J.P.; Forster, C.B. Fault zone architecture and permeability structure. Geology 1996, 24, 1025–1028. [Google Scholar] [CrossRef]
Model Parameter | Symbol | Value |
---|---|---|
Young’s modulus | 37.5 GPa | |
Drained Poisson’s ratio | 0.25 | |
Undrained Poisson’s ratio | 0.34 | |
Skempton’s coefficient | 0.75 | |
Fluid viscosity | 1 × 10−3 Pa·s | |
Permeability | 2.5 × 10−18 m2 | |
Diffusivity | c | 0.42 m2/s |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, X.; Zhao, R.; Deng, K. A Comprehensive Numerical Model for Reservoir-Induced Earthquake Risk Assessment. Entropy 2023, 25, 1383. https://doi.org/10.3390/e25101383
Peng X, Zhao R, Deng K. A Comprehensive Numerical Model for Reservoir-Induced Earthquake Risk Assessment. Entropy. 2023; 25(10):1383. https://doi.org/10.3390/e25101383
Chicago/Turabian StylePeng, Xuefeng, Rong Zhao, and Kai Deng. 2023. "A Comprehensive Numerical Model for Reservoir-Induced Earthquake Risk Assessment" Entropy 25, no. 10: 1383. https://doi.org/10.3390/e25101383
APA StylePeng, X., Zhao, R., & Deng, K. (2023). A Comprehensive Numerical Model for Reservoir-Induced Earthquake Risk Assessment. Entropy, 25(10), 1383. https://doi.org/10.3390/e25101383