An Inexact Feasible Quantum Interior Point Method for Linearly Constrained Quadratic Optimization
Abstract
Share and Cite
Wu, Z.; Mohammadisiahroudi, M.; Augustino, B.; Yang, X.; Terlaky, T. An Inexact Feasible Quantum Interior Point Method for Linearly Constrained Quadratic Optimization. Entropy 2023, 25, 330. https://doi.org/10.3390/e25020330
Wu Z, Mohammadisiahroudi M, Augustino B, Yang X, Terlaky T. An Inexact Feasible Quantum Interior Point Method for Linearly Constrained Quadratic Optimization. Entropy. 2023; 25(2):330. https://doi.org/10.3390/e25020330
Chicago/Turabian StyleWu, Zeguan, Mohammadhossein Mohammadisiahroudi, Brandon Augustino, Xiu Yang, and Tamás Terlaky. 2023. "An Inexact Feasible Quantum Interior Point Method for Linearly Constrained Quadratic Optimization" Entropy 25, no. 2: 330. https://doi.org/10.3390/e25020330
APA StyleWu, Z., Mohammadisiahroudi, M., Augustino, B., Yang, X., & Terlaky, T. (2023). An Inexact Feasible Quantum Interior Point Method for Linearly Constrained Quadratic Optimization. Entropy, 25(2), 330. https://doi.org/10.3390/e25020330