An Inexact Feasible Quantum Interior Point Method for Linearly Constrained Quadratic Optimization
Abstract
:1. Introduction
2. Preliminaries
2.1. Notation
2.2. IPMs for LCQO
2.3. Orthogonal Subspaces System
3. Inexact Feasible IPM with QLSAs
3.1. IF-IPM for LCQO
Algorithm 1: Short-step IF-IPM |
|
3.2. IF-QIPM for LCQO
Algorithm 2: Short-step IF-QIPM |
|
3.2.1. Bound for
3.2.2. Bound for
4. Application in Support Vector Machine Problems
5. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
IF-IPM | Inexact Feasible Interior Point Method |
IF-QIPM | Inexact Feasible Quantum Interior Point Methods |
IPM | Interior Point Method |
LCQO | Linearly Constrained Quadratic Optimization |
LO | Linear Optimization |
OSS | Orthogonal Subspace System |
QIPM | Quantum Interior Point Method |
QLSA | Quantum Linear System Algorithm |
QTA | Quantum Tomography Algorithm |
SOCO | Second-Order Conic Optimization |
SVM | Support Vector Machine |
Appendix A. Block Encoding of the OSS System
Appendix B. Spectral Analysis for Matrix
References
- Nocedal, J.; Wright, S.J. Numerical Optimization; Springer: New York, NY, USA, 1999. [Google Scholar]
- Boser, B.E.; Guyon, I.M.; Vapnik, V.N. A training algorithm for optimal margin classifiers. In Proceedings of the Fifth Annual Workshop on Computational Learning Theory, Pittsburgh, PA, USA, 27–29 July 1992; Haussler, D., Ed.; Association for Computing Machinery: New York, NY, USA, 1992; pp. 144–152. [Google Scholar]
- Roos, C.; Terlaky, T.; Vial, J.P. Theory and Algorithms for Linear Optimization: An Interior Point Approach; John Wiley & Sons: New York, NY, USA, 1997. [Google Scholar]
- Pólik, I.; Terlaky, T. Interior point methods for nonlinear optimization. In Nonlinear Optimization; Gianni Di Pillo, F.S., Ed.; Springer: New York, NY, USA, 2010; pp. 215–276. [Google Scholar]
- Gondzio, J. Convergence analysis of an inexact feasible interior point method for convex quadratic programming. SIAM J. Optim. 2013, 23, 1510–1527. [Google Scholar] [CrossRef]
- Lu, Z.; Monteiro, R.D.; O’Neal, J.W. An iterative solver-based infeasible primal-dual path-following algorithm for convex quadratic programming. SIAM J. Optim. 2006, 17, 287–310. [Google Scholar] [CrossRef]
- Bunch, J.R.; Parlett, B.N. Direct methods for solving symmetric indefinite systems of linear equations. SIAM J. Numer. Anal. 1971, 8, 639–655. [Google Scholar] [CrossRef]
- Schuld, M.; Sinayskiy, I.; Petruccione, F. Prediction by linear regression on a quantum computer. Phys. Rev. A 2016, 94, 022342. [Google Scholar] [CrossRef]
- Kerenidis, I.; Prakash, A.; Szilágyi, D. Quantum algorithms for second-order cone programming and support vector machines. Quantum 2021, 5, 427. [Google Scholar] [CrossRef]
- Harrow, A.W.; Hassidim, A.; Lloyd, S. Quantum algorithm for linear systems of equations. Phys. Rev. Lett. 2009, 103, 150502. [Google Scholar] [CrossRef] [PubMed]
- Kerenidis, I.; Prakash, A. A quantum interior point method for LPs and SDPs. ACM Trans. Quantum Comput. 2020, 1, 1–32. [Google Scholar] [CrossRef]
- Mohammadisiahroudi, M.; Fakhimi, R.; Terlaky, T. Efficient use of quantum linear system algorithms in interior point methods for linear optimization. arXiv 2022, arXiv:2205.01220. [Google Scholar]
- Augustino, B.; Nannicini, G.; Terlaky, T.; Zuluaga, L.F. Quantum interior point methods for semidefinite optimization. arXiv 2021, arXiv:2112.06025. [Google Scholar]
- Mohammadisiahroudi, M.; Fakhimi, F.; Wu, Z.; Terlaky, T. An Inexact Feasible Interior Point Method for Linear Optimization with High Adaptability to Quantum Computers; Technical Report: 21T-006; Department of ISE, Lehigh University: Bethlehem, PA, USA, 2021. [Google Scholar]
- Kojima, M.; Mizuno, S.; Yoshise, A. A polynomial-time algorithm for a class of linear complementarity problems. Math. Program. 1989, 44, 1–26. [Google Scholar] [CrossRef]
- Monteiro, R.D.; Adler, I. Interior path following primal-dual algorithms. part II: Convex quadratic programming. Math. Program. 1989, 44, 43–66. [Google Scholar] [CrossRef]
- Goldfarb, D.; Liu, S. An O (n 3L) primal interior point algorithm for convex quadratic programming. Math. Program. 1990, 49, 325–340. [Google Scholar] [CrossRef]
- Gilyén, A.; Su, Y.; Low, G.H.; Wiebe, N. Quantum singular value transformation and beyond: Exponential improvements for quantum matrix arithmetics. arXiv 2018, arXiv:1806.01838. [Google Scholar]
- Chakraborty, S.; Gilyén, A.; Jeffery, S. The power of block-encoded matrix powers: Improved regression techniques via faster Hamiltonian simulation. arXiv 2018, arXiv:1804.01973. [Google Scholar]
- van Apeldoorn, J.; Cornelissen, A.; Gilyén, A.; Nannicini, G. Quantum tomography using state-preparation unitaries. arXiv 2022, arXiv:2207.08800. [Google Scholar]
- Horn, R.A.; Johnson, C.R. Matrix Analysis; Cambridge University Press: Cambridge, UK, 2012. [Google Scholar]
- Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Rebentrost, P.; Mohseni, M.; Lloyd, S. Quantum support vector machine for big data classification. Phys. Rev. Lett. 2014, 113, 130503. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Z.; Mohammadisiahroudi, M.; Augustino, B.; Yang, X.; Terlaky, T. An Inexact Feasible Quantum Interior Point Method for Linearly Constrained Quadratic Optimization. Entropy 2023, 25, 330. https://doi.org/10.3390/e25020330
Wu Z, Mohammadisiahroudi M, Augustino B, Yang X, Terlaky T. An Inexact Feasible Quantum Interior Point Method for Linearly Constrained Quadratic Optimization. Entropy. 2023; 25(2):330. https://doi.org/10.3390/e25020330
Chicago/Turabian StyleWu, Zeguan, Mohammadhossein Mohammadisiahroudi, Brandon Augustino, Xiu Yang, and Tamás Terlaky. 2023. "An Inexact Feasible Quantum Interior Point Method for Linearly Constrained Quadratic Optimization" Entropy 25, no. 2: 330. https://doi.org/10.3390/e25020330
APA StyleWu, Z., Mohammadisiahroudi, M., Augustino, B., Yang, X., & Terlaky, T. (2023). An Inexact Feasible Quantum Interior Point Method for Linearly Constrained Quadratic Optimization. Entropy, 25(2), 330. https://doi.org/10.3390/e25020330