Artificial Intelligence Techniques Used to Extract Relevant Information from Complex Social Networks
Abstract
:1. Introduction
2. Methods & Materials
2.1. Social Network Construction
2.2. Complex Network Analysis and Metrics of Interest
2.3. Convolutional Neural Networks (CNN)
3. Results
3.1. Social Network Analysis
3.2. Prediction of the CNN
4. Discussion/Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Lazer, D.; Pentland, A.; Adamic, L.; Aral, S.; Barabasi, A.; Brewer, D.; Christakis, N.; Contractor, N.; Fowler, J.; Gutmann, M.; et al. Life in the network: The coming age of computational social science. Science 2009, 323, 721–723. [Google Scholar] [CrossRef] [Green Version]
- Russell, M.A. Mining the Social Web: Analyzing Data from Facebook, Twitter, LinkedIn, and Other Social Media Sites; O’Reilly Media, Inc.: Newton, MA, USA, 2011. [Google Scholar]
- Boyd, D.; Crawford, K. Critical Questions for Big Data. Inf. Commun. Soc. 2012, 15, 662–679. [Google Scholar] [CrossRef]
- Hughes, D.J.; Rowe, M.; Batey, M.; Lee, A. A tale of two sites: Twitter vs. Facebook and the personality predictors of social media usage. Comput. Hum. Behav. 2012, 28, 561–569. [Google Scholar] [CrossRef] [Green Version]
- Rauniar, R.; Rawski, G.; Yang, J.; Johnson, B. Technology acceptance model (TAM) and social media usage: An empirical study on Facebook. J. Enterp. Inf. Manag. 2014, 27, 6–30. [Google Scholar] [CrossRef] [Green Version]
- Bright, L.F.; Kleiser, S.; Grau, S.L. Too much Facebook? An exploratory examination of social media fatigue. Comput. Hum. Behav. 2015, 44, 148–155. [Google Scholar] [CrossRef]
- Kaya, T.; Bicen, H. The effects of social media on students’ behaviors; Facebook as a case study. Comput. Hum. Behav. 2016, 59, 374–379. [Google Scholar] [CrossRef]
- Sundström, M.; Alm, K.; Larsson, N.; Dahlin, O. B2B social media content: Engagement on LinkedIn. J. Bus. Ind. Mark. 2020, 36, 454–468. [Google Scholar] [CrossRef]
- Utz, S. Is LinkedIn making you more successful? The informational benefits derived from public social media. New Media Soc. 2016, 18, 2685–2702. [Google Scholar] [CrossRef] [Green Version]
- Koch, T.; Gerber, C.; De, K.J.J. The impact of social media on recruitment: Are you LinkedIn? SA J. Hum. Resour. Manag. 2018, 16, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Xiong, F.; Liu, Y. Opinion formation on social media: An empirical approach. Chaos Interdiscip. J. Nonlinear Sci. 2014, 24, 013130. [Google Scholar] [CrossRef] [PubMed]
- Baumann, F.; Lorenz-Spreen, P.; Sokolov, I.; Starnini, M. Modeling Echo Chambers and Polarization Dynamics in Social Networks. Phys. Rev. Lett. 2020, 124, 048301. [Google Scholar] [CrossRef] [Green Version]
- Morales, A.J.; Borondo, J.; Losada, J.; Benito, R.M. Measuring political polarization: Twitter shows the two sides of Venezuela. Chaos 2015, 25, 033114. [Google Scholar] [CrossRef] [Green Version]
- Conover, M.D.; Ratkiewicz, J.; Francisco, M.; Goncalves, B.; Menczer, F.; Flammini, A. Political Polarization on Twitter. Proc. Int. AAAI Conf. Web Soc. Media 2011, 5, 89–96. [Google Scholar] [CrossRef]
- Cinelli, M.; Morales, G.; Galeazzi, A.; Quattrociocchi, W.; Starnini, M. The echo chamber effect on social media. Proc. Natl. Acad. Sci. USA 2021, 118, e2023301118. [Google Scholar] [CrossRef]
- Garimella, K.; De Francisci Morales, G.; Gionis, A.; Mathioudakis, M. Political Discourse on Social Media: Echo Chambers, Gatekeepers, and the Price of Bipartisanship. In Proceedings of the 2018 World Wide Web Conference, Geneva, Switzerland, 23–27 April 2018. [Google Scholar]
- Del Vicario, M.; Vivaldo, G.; Bessi, A.; Zollo, F.; Scala, A.; Caldarelli, G.; Quattrociocchi, W. Echo Chambers: Emotional Contagion and Group Polarization on Facebook. Sci. Rep. 2016, 6, 37825. [Google Scholar] [CrossRef] [PubMed]
- Vosoughi, S.; Roy, D.; Aral, S. The spread of true and false news online. Science 2018, 359, 1146–1151. [Google Scholar] [CrossRef] [PubMed]
- Vicario, M.D.; Bessi, A.; Zollo, F.; Petroni, F.; Scala, A.; Caldarelli, G.; Stanley, H.; Quattrociocchi, W. The spreading of misinformation online. Proc. Natl. Acad. Sci. USA 2016, 113, 554–559. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grinberg, N.; Joseph, K.; Friedland, L.; Swire-Thompson, B.; Lazer, D. Fake news on Twitter during the 2016 U.S. presidential election. Science 2019, 363, 374–378. [Google Scholar] [CrossRef]
- Kouzy, R.; Jaoude, J.; Kraitem, A.; Alam, M.; Karam, B.; Adib, E.; Zarka, J.; Traboulsi, C.; Akl, E.; Baddour, K. Coronavirus Goes Viral: Quantifying the COVID-19 Misinformation Epidemic on Twitter. Cureus 2020, 12, e7255. [Google Scholar] [CrossRef] [Green Version]
- Weng, L.; Flammini, A.; Vespignani, A.; Menczer, F. Competition among memes in a world with limited attention. Sci. Rep. 2012, 2, 335. [Google Scholar] [CrossRef] [Green Version]
- Weng, L.; Menczer, F.; Ahn, Y.-Y. Virality Prediction and Community Structure in Social Networks. Sci. Rep. 2013, 3, 2522. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stieglitz, S.; Dang-Xuan, L. Emotions and Information Diffusion in Social Media—Sentiment of Microblogs and Sharing Behavior. J. Manag. Inf. Syst. 2013, 29, 217–248. [Google Scholar] [CrossRef]
- Dunn, A.G.; Leask, J.; Zhou, X.; Mandl, K.; Coiera, E. Associations Between Exposure to and Expression of Negative Opinions About Human Papillomavirus Vaccines on Social Media: An Observational Study. J. Med. Internet Res. 2015, 17, e4343. [Google Scholar] [CrossRef] [PubMed]
- Bollen, J.; Mao, H.; Zeng, X. Twitter mood predicts the stock market. J. Comput. Sci. 2011, 2, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Carballosa, A.; Mussa-Juane, M.; Muñuzuri, A.P. Incorporating social opinion in the evolution of an epidemic spread. Sci. Rep. 2021, 11, 1772. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Brelsford, C. Network Structure and Community Evolution on Twitter: Human Behavior Change in Response to the 2011 Japanese Earthquake and Tsunami. Sci. Rep. 2014, 4, 6773. [Google Scholar] [CrossRef] [Green Version]
- Chew, C.; Eysenbach, G. Pandemics in the Age of Twitter: Content Analysis of Tweets during the 2009 H1N1 Outbreak. PLoS ONE 2010, 5, e14118. [Google Scholar] [CrossRef]
- De França, F.O.; di Genova, D.; Penteado, C.; Kamienski, C.A. Understanding conflict origin and dynamics on Twitter: A real-time detection system. Expert Syst. Appl. 2023, 212, 118748. [Google Scholar] [CrossRef]
- Barabási, A.-L.; Pósfai, M. Network Science; Cambridge University Press: Cambridge, UK, 2016; pp. 112–163. [Google Scholar]
- Barabási, A.-L.; Albert, R. Emergence of Scaling in Random Networks. Science 1999, 286, 509–512. [Google Scholar] [CrossRef] [Green Version]
- Dijkstra, E.W. A note on two problems in connexion with graphs. Numer. Math. 1959, 1, 269–271. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Itoh, K.; Tanida, J.; Ichioka, Y. Parallel distributed processing model with local space-invariant interconnections and its optical architecture. Appl. Opt. 1990, 29, 4790–4797. [Google Scholar] [CrossRef]
- Liu, Y.; Pu, H.; Sun, D.-W. Efficient extraction of deep image features using convolutional neural network (CNN) for applications in detecting and analysing complex food matrices. Trends Food Sci. Technol. 2021, 113, 193–204. [Google Scholar] [CrossRef]
- Xin, R.; Zhang, J.; Shao, Y. Complex Network Classification with Convolutional Neural Network. Tsinghua Sci. Technol. 2020, 25, 447–457. [Google Scholar] [CrossRef]
- Bastian, M.; Heymann, S.; Jacomy, M. Gephi: An open source software for exploring and manipulating networks. In Proceedings of the Third international AAAI Conference on Weblogs and Social Media, San Jose, CA, USA, 17–20 May 2009. [Google Scholar]
- Sadri, A.M.; Hasan, S.; Ukkusuri, S.; Lopez, J.E.S. Analysis of social interaction network properties and growth on Twitter. Soc. Netw. Anal. Min. 2018, 8, 56. [Google Scholar] [CrossRef]
- Grando, F.; Granville, L.; Lamb, L.C. Machine Learning in Network Centrality Measures: Tutorial and Outlook. ACM Comput. Surv. 2018, 51, 1–32. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paramés-Estévez, S.; Carballosa, A.; Garcia-Selfa, D.; Munuzuri, A.P. Artificial Intelligence Techniques Used to Extract Relevant Information from Complex Social Networks. Entropy 2023, 25, 507. https://doi.org/10.3390/e25030507
Paramés-Estévez S, Carballosa A, Garcia-Selfa D, Munuzuri AP. Artificial Intelligence Techniques Used to Extract Relevant Information from Complex Social Networks. Entropy. 2023; 25(3):507. https://doi.org/10.3390/e25030507
Chicago/Turabian StyleParamés-Estévez, Santiago, Alejandro Carballosa, David Garcia-Selfa, and Alberto P. Munuzuri. 2023. "Artificial Intelligence Techniques Used to Extract Relevant Information from Complex Social Networks" Entropy 25, no. 3: 507. https://doi.org/10.3390/e25030507
APA StyleParamés-Estévez, S., Carballosa, A., Garcia-Selfa, D., & Munuzuri, A. P. (2023). Artificial Intelligence Techniques Used to Extract Relevant Information from Complex Social Networks. Entropy, 25(3), 507. https://doi.org/10.3390/e25030507