Multi-Criteria Analysis of Startup Investment Alternatives Using the Hierarchy Method
Abstract
:1. Introduction
- (1)
- the innovation of an idea;
- (2)
- the necessity of capital investment;
- (3)
- reproducibility (possibility to sell the inventive solution multiple times);
- (4)
- business expansion;
- (5)
- the existence of a detailed and structured business plan;
- (6)
- generally, a startup is a project in initial stages of implementation;
- (7)
- the possibility of significant growth of the project;
- (8)
- often, startups propose new technologies;
- (9)
- uniqueness;
- (10)
- the potential team of professionals;
- (11)
- the riskiness of the investments;
- (12)
- the concentration of management decisions by the startup founders;
- (13)
- the flexibility as well as quick and efficient adaptation to changes in the environment;
- (14)
- the possibility to individualize the products, according to the demands of consumers;
- (15)
- the dependence on credit resources;
- (16)
- the close relations between the founder and the employees, etc.
2. Criteria Composition for Evaluating Investment Attractiveness of Startups
3. Implementation of the Saaty Method for Identified Criteria Composition
4. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Blank, S.; Dorf, B. The Startup Owner’s Manual: The Step-by-Step Guide for Building a Great Company; K&S Ranch Press: Pescadero, CA, USA, 2012. [Google Scholar]
- Benjamin, G.A.; Margulis, J.B. The Angel Investor’s Handbook: How to Profit from Early-Stage Investing; Bloomberg Press: Princeton, NJ, USA, 2001. [Google Scholar]
- Belton, V.; Stewart, T. Multiple Criteria Decision Analysis: An Integrated Approach; Springer: New York, NY, USA, 2002. [Google Scholar]
- Campbell, K. Smarter Ventures: A Survivor’s Guide to Venture Capital through the New Cycle; Prentice Hall: Harlow, UK, 2003. [Google Scholar]
- Kessler, A. Eat People: Furthermore, Other Unapologetic Rules for Game-Changing Entrepreneurs; Penguin Group: New York, NY, USA, 2011. [Google Scholar]
- Li, Y. Duration analysis of venture capital staging: A real options perspective. J. Bus. Ventur. 2008, 23, 497–512. [Google Scholar] [CrossRef]
- Saaty, T.L. The Analytical Hierarchy Process: Planning, Priority Setting, Resource Allocation; McGraw-Hill: New York, NY, USA, 1980. [Google Scholar]
- Saaty, T.L. Multicriteria Decision Making: The Analytical Hierarchy Process; RWS Publications: Pittsburgh, PA, USA, 1988. [Google Scholar]
- Saaty, T.L. Decision Making with Dependence and Feedback: The Analytical Network Process, 2nd ed.; RWS Publications: Pittsburgh, PA, USA, 2001. [Google Scholar]
- Saaty, T.L. Fundamentals of Decision Making and Priority Theory with the Analytical Hierarchy Process, 2nd ed.; RWS Publications: Pittsburgh, PA, USA, 2006. [Google Scholar]
- Saaty, T.L.; Vargas, L.G. Decision Making with the Analytical Network Process: Economic, Political, Social and Technological Applications with Benefits, Opportunities, Costs and Risks; Springer: New York, NY, USA, 2006. [Google Scholar]
- Saaty, T.L. Decision Making for Leaders: The Analytical Hierarchy Process for Decisions in a Complex World, 3rd ed.; RWS Publications: Pittsburgh, PA, USA, 2012. [Google Scholar]
- Saaty, T.L.; Vargas, L.G. Models, Methods, Concepts & Applications of the Analytical Hierarchy Process, 2nd ed.; Springer: New York, NY, USA, 2012. [Google Scholar]
- Brunelli, M. Introduction to the Analytical Hierarchy Process; Springer: Cham, Switzerland, 2015. [Google Scholar]
- Roy, U.; Majumder, M. Vulnerability of Watersheds to Climate Change Assessed by Neural Network and Analytical Hierarchy Process; Springer: Singapore, 2016. [Google Scholar]
- De Felice, F.; Saaty, T.L.; Petrillo, A. (Eds.) Applications and Theory of Analytical Hierarchy Process—Decision Making for Strategic Decisions; IntechOpen: London, UK, 2016. [Google Scholar]
- Ozsahin, D.U.; Hüseyin Gökçekuş, H.; Uzun, B.; LaMoreaux, J. (Eds.) Application of Multi-Criteria Decision Analysis in Environmental and Civil Engineering; Springer: Cham, Switzerland, 2021. [Google Scholar]
- Thakkar, J.J. Multi-Criteria Decision Making; Springer: Singapore, 2021. [Google Scholar]
- Kulakowski, K. Understanding the Analytical Hierarchy Process; Chapman and Hall/CRC: Boca Raton, FL, USA, 2022. [Google Scholar]
- Pohekar, S.D.; Ramachandran, M. Application of multi-criteria decision making to sustainable energy planning—A review. Renew. Sustain. Energy Rev. 2004, 8, 365–381. [Google Scholar] [CrossRef]
- Vaidya, O.S.; Kumar, S. Analytical hierarchy process: An overview of applications. Eur. J. Oper. Res. 2006, 169, 1–29. [Google Scholar] [CrossRef]
- Ho, W. Integrated analytical hierarchy process and its applications—A literature review. Eur. J. Oper. Res. 2008, 186, 211–228. [Google Scholar] [CrossRef]
- Liberatore, M.J.; Nydick, R.L. The analytical hierarchy process in medical and health care decision making: A literature review. Eur. J. Oper. Res. 2008, 189, 294–307. [Google Scholar] [CrossRef]
- Ishizaka, A.; Labib, A. Review of the main developments in the Analytical Hierarchy Process. Expert Syst. Appl. 2011, 38, 14336–14345. [Google Scholar]
- Subramanian, N.; Ramanathan, R. A review of applications of Analytical Hierarchy Process in operations management. Int. J. Prod. Econ. 2012, 138, 215–241. [Google Scholar] [CrossRef]
- Schmidt, K.; Aumann, I.; Hollander, I.; Damm, K.; von der Schulenburg, J.M.G. Applying the Analytical Hierarchy Process in healthcare research: A systematic literature review and evaluation of reporting. BMC Med. Inform. Decis. Mak. 2015, 15, 112. [Google Scholar] [CrossRef]
- Russo, R.F.S.M.; Camanho, R. Criteria in AHP: A systematic review of literature. Procedia Comput. Sci. 2015, 55, 1123–1132. [Google Scholar] [CrossRef]
- Nisel, S.; Özdemir, M. AHP/ANP in sports: A comprehensive literature review. Int. J. Anal. Hierarchy Process 2016, 8, 405–429. [Google Scholar]
- Emrouznejad, A.; Marra, M. The state of the art development of AHP (1979–2017): A literature review with a social network analysis. Int. J. Prod. Res. 2017, 55, 6653–6675. [Google Scholar] [CrossRef]
- Rajput, V.; Kumar, D.; Sharma, A.; Singh, S.; Rambhagat. A literature review on AHP (Analytical Hierarchy Process). J. Adv. Res. Appl. Sci. 2018, 5, 349–355. [Google Scholar]
- Darko, A.; Chan, A.P.C.; Ameyaw, E.E.; Owusu, E.K.; Pärn, E.; Edwards, D.J. Review of application of analytical hierarchy process (AHP) in construction. Int. J. Constr. Manag. 2019, 19, 436–452. [Google Scholar]
- Goyal, P.; Kumar, D.; Kumar, V. Application of multi-criteria decision analysis in the area of sustainability: A literature review. Int. J. Anal. Hierarchy Process 2020, 12, 512–545. [Google Scholar]
- Madzík, P.; Falát, L. State-of-the-art on analytical hierarchy process in the last 40 years: Literature review based on Latent Dirichlet Allocation topic modelling. PLoS ONE 2022, 17, e0268777. [Google Scholar] [CrossRef]
- Saaty, T.L.; Hu, G. Ranking by eigenvector versus other methods in the Analytical Hierarchy Process. Appl. Math. Lett. 1998, 11, 121–125. [Google Scholar] [CrossRef]
- Saaty, T.L. Decision-making with the AHP: Why is the principal eigenvector necessary. Eur. J. Oper. Res. 2003, 145, 85–91. [Google Scholar] [CrossRef]
- Crawford, G.B. The geometric mean procedure for estimating the scale of a judgment matrix. Math. Model. 1987, 9, 327–334. [Google Scholar] [CrossRef]
- Csató, L. A characterization of the Logarithmic Least Squares Method. Eur. J. Oper. Res. 2019, 276, 212–216. [Google Scholar] [CrossRef]
- Wang, L.; Xu, L.; Feng, S.; Meng, M.Q.-H.; Wang, K. Multi–Gaussian fitting for pulse waveform using Weighted Least Squares and multi-criteria decision making method. Comput. Biol. Med. 2013, 43, 1661–1672. [Google Scholar] [CrossRef]
- Wu, S.; Fu, Y.; Lai, K.K.; Leung, W.K.J. A Weighted Least-Square Dissimilarity Approach for multiple criteria ABC inventory classification. Asia-Pac. J. Oper. Res. 2018, 35, 1850025. [Google Scholar] [CrossRef]
- Mikhailov, L. Fuzzy programming method for deriving priorities in the Analytical Hierarchy Process. J. Oper. Res. Soc. 2000, 51, 341–349. [Google Scholar] [CrossRef]
- Wang, J.; Fan, K.; Wang, W. Integration of fuzzy AHP and FPP with TOPSIS methodology for aeroengine health assessment. Expert Syst. Appl. 2010, 37, 8516–8526. [Google Scholar] [CrossRef]
- Almulhim, T.; Mikhailov, L.; Xu, D.-L. A fuzzy group prioritization method for deriving weights and its software implementation. Int. J. Artif. Intell. Interact. Multimed. 2013, 2, 7–14. [Google Scholar] [CrossRef]
- Fallahpour, A.; Wong, K.Y.; Rajoo, S.; Olugu, E.U.; Nilashi, M.; Turskis, Z. A fuzzy decision support system for sustainable construction project selection: An integrated FPP-FIS model. J. Civ. Eng. Manag. 2020, 26, 247–258. [Google Scholar] [CrossRef]
- Kou, G.; Lin, C. A cosine maximization method for the priority vector derivation in AHP. Eur. J. Oper. Res. 2014, 235, 225–235. [Google Scholar] [CrossRef]
- Srdjevic, B. Combining different prioritization methods in the analytical hierarchy process synthesis. Comput. Oper. Res. 2005, 32, 1897–1919. [Google Scholar] [CrossRef]
- Keršulienė, V.; Zavadskas, E.K.; Turskis, Z. Selection of rational dispute resolution method by applying new stepwise weight assessment ratio analysis (SWARA). J. Bus. Econ. Manag. 2010, 11, 243–258. [Google Scholar] [CrossRef]
- Stanujkic, D.; Karabasevic, D.; Zavadskas, E.K. A framework for the selection of a packaging design based on the SWARA method. Eng. Econ. 2015, 26, 181–187. [Google Scholar] [CrossRef]
- Rezaei, J. Best-worst multi-criteria decision-making method. Omega 2015, 53, 49–57. [Google Scholar] [CrossRef]
- Rezaei, J. Best-worst multi-criteria decision-making method: Some properties and a linear model. Omega 2016, 64, 126–130. [Google Scholar] [CrossRef]
- Pamučar, D.; Ecer, F.; Cirovic, G.; Arlasheedi, M.A. Application of improved best worst method (BWM) in real-world problems. Mathematics 2020, 8, 1342. [Google Scholar] [CrossRef]
- Pamučar, D.; Stević, Ž.; Sremac, S. A new model for determining weight coefficients of criteria in MCDM models: Full Consistency Method (FUCOM). Symmetry 2018, 10, 393. [Google Scholar] [CrossRef]
- Fazlollahtabar, H.; Smailbašić, A.; Stević, Ž. FUCOM method in group decision-making: Selection of forklift in a warehouse. Decis. Mak. Appl. Manag. Eng. 2019, 2, 49–65. [Google Scholar] [CrossRef]
- Stević, Ž.; Brković, N. A novel integrated FUCOM-MARCOS model for evaluation of human resources in a transport company. Logistics 2020, 4, 4. [Google Scholar] [CrossRef]
- Žižović, M.; Pamučar, D. New model for determining criteria weights: Level Based Weight Assessment (LBWA) model. Decis. Mak. Appl. Manag. Eng. 2019, 2, 126–137. [Google Scholar] [CrossRef]
- Božanić, D.; Ranđelović, A.; Radovanović, M.; Tešić, D. A hybrid LBWA - IR-MAIRCA multi-criteria decision-making model for determination of constructive elements of weapons. Facta Univ. Ser. Mech. Eng. 2020, 18, 399–418. [Google Scholar] [CrossRef]
- Greblikaitė, J.; Daugėlienė, R. Cluster analysis of expression of entrepreneurship characteristics in the EU innovative projects for SME’s and KTU regional science park. Eur. Integr. Stud. 2009, 3, 184–189. [Google Scholar]
- Yüksel, I. Developing a multi-criteria decision making model for PESTEL analysis. Int. J. Bus. Manag. 2012, 7, 52–66. [Google Scholar] [CrossRef]
- Leyva Vázquez, M.; Hechavarría Hernández, J.; Batista Hernández, N.; Alarcón Salvatierra, J.A.; Gómez Baryolo, O. A framework for PEST analysis based on fuzzy decision maps. Rev. Espac. 2018, 39. Available online: https://www.revistaespacios.com/a18v39n16/18391603.html (accessed on 10 January 2018).
- Greblikaitė, J.; Astrovienė, J.; Montvydaitė, D. Value-added agricultural bio-business development in European countries. Manag. Theory Stud. Rural Bus. Infrastruct. Dev. 2020, 42, 235–247. [Google Scholar] [CrossRef]
- Saaty, R.W. The analytical hierarchy process – what it is and how it is used. Math. Model. 1987, 9, 161–176. [Google Scholar] [CrossRef]
- Saaty, T.L. Decision making with the analytical hierarchy process. Int. J. Serv. Sci. 2008, 1, 83–98. [Google Scholar]
No | Type of Potential | Criteria |
---|---|---|
1. | Financial strength | 1. Value of investment 2. Payback period (PBP) 3. Expected profitability 4. Risk level 5. Full or partial investor control of the startup 6. Possibility of reverse repurchase (RRP) 7. Possibility of tranche-funding, depending on the stage of the project |
2. | Product/service potential | 8. Availability of samples or models of the product |
3. | Marketing potential | 9. Startup position in the market 10. Forecasted level of demand for the product/service 11. Level of competition in the economic branch or industrial sector 12. Evaluation of startup competitiveness 13. Significant target audience 14. Availability of marketing strategy 15. Requirements to attract and interact with customers within the startup initial stage |
4. | Organizational potential | 16. Availability of organizational plan |
5. | Scientific and technical potential | 17. Innovation of idea 18. Innovation of technology 19. Availability of project plan for technical realization 20. Availability of intellectual property rights |
6. | Staff potential | 21. Availability of potential specialists 22. Uniqueness of specialists |
7. | Potential of the governmental, international, economic, and political situation | 23. The level of development of economic branch or sector in which the startup will operate 24. The level of governmental support of industry branch |
8. | Time potential | 25. Period of project completion 26. Stage of project development 27. Duration of product introductory period/start of retail service |
9. | Autonomy potential | 28. Dependence of the startup on other economic branches or industrial sectors 29. Dependence of the startup on other similar projects |
10. | Ecological potential | 30. Level of negative impact on the environment |
11. | Social potential | 31. Accessibility of project’s social utility |
12. | Information potential | 32. Availability, reliability, and quality of information in economic branch or industrial sector in which the startup will operate |
Groups of Criteria | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | RM | DV | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 1 | 3 | 3 | 4 | 2 | 1 | 2 | 2 | 4 | 5 | 4 | 3 | 0.1893 | 2.3312 | 12.31 |
2 | 1/3 | 1 | 1/2 | 1 | 1/2 | 1/2 | 1 | 1/2 | 3 | 3 | 3 | 4 | 0.0800 | 1.1099 | 13.87 |
3 | 1/3 | 2 | 1 | 2 | 1 | 1/2 | 1 | 1 | 2 | 2 | 2 | 2 | 0.0911 | 1.1345 | 12.45 |
4 | 1/4 | 1 | 1/2 | 1 | 1/2 | 1/5 | 1 | 1/2 | 1 | 1 | 1 | 1 | 0.0490 | 0.6099 | 12.45 |
5 | 1/2 | 2 | 1 | 2 | 1 | 1 | 2 | 1 | 2 | 2 | 2 | 2 | 0.1058 | 1.2968 | 12.26 |
6 | 1 | 2 | 2 | 5 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 0.1282 | 1.6571 | 12.93 |
7 | 1/2 | 1 | 1 | 1 | 1/2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0.0666 | 0.8525 | 12.80 |
8 | 1/2 | 2 | 1 | 2 | 1 | 1/2 | 1 | 1 | 2 | 2 | 2 | 2 | 0.0942 | 1.1661 | 12.38 |
9 | 1/4 | 1/3 | 1/2 | 1 | 1/2 | 1/2 | 1 | 1/2 | 1 | 1 | 1 | 1 | 0.0483 | 0.5950 | 12.32 |
10 | 1/5 | 1/3 | 1/2 | 1 | 1/2 | 1/2 | 1 | 1/2 | 1 | 1 | 1/2 | 1/2 | 0.0422 | 0.5329 | 12.63 |
11 | 1/4 | 1/3 | 1/2 | 1 | 1/2 | 1 | 1 | 1/2 | 1 | 2 | 1 | 1/2 | 0.0511 | 0.6742 | 13.19 |
12 | 1/3 | 1/4 | 1/2 | 1 | 1/2 | 1/2 | 1 | 1/2 | 1 | 2 | 2 | 1 | 0.0542 | 0.6975 | 12.87 |
Startup | Production of LED Traffic Lights | Manufacture of Information–Reference Electronic Terminals | Manufacture of Rotor-Reactive Turbo-Rotational Heaters of Liquids | Priority Vector (The Normalized Vector of Geometric Means) | RM | DV |
---|---|---|---|---|---|---|
Production of LED traffic lights | 1 | 1/3 | 1 | 0.20984 | 0.63337 | 3.01835 |
Manufacture of information–reference electronic terminals | 3 | 1 | 2 | 0.54994 | 1.65990 | 3.01833 |
Manufacture of rotor-reactive turbo-rotational heaters of liquids | 1 | 1/2 | 1 | 0.24021 | 0.72503 | 3.01832 |
Investing Alternatives in Startups | Production of LED Traffic Lights | Manufacture of Information–Reference Electronic Terminals | Manufacture of Rotor-Reactive Turbo-Rotational Heaters of Liquids | |
---|---|---|---|---|
No | Groups of Criteria | Priority Vectors | ||
1. | Financial strength | 0.2098 | 0.5499 | 0.2402 |
2. | Product/service potential | 0.2000 | 0.4000 | 0.4000 |
3. | Marketing potential | 0.2000 | 0.4000 | 0.4000 |
4. | Organizational potential | 0.2500 | 0.5000 | 0.2500 |
5. | Scientific and technical potential | 0.1634 | 0.5396 | 0.2970 |
6. | Staff potential | 0.1958 | 0.3108 | 0.4934 |
7. | Potential of governmental, international, | |||
economic, and political situation | 0.2500 | 0.2500 | 0.5000 | |
8. | Time potential | 0.5936 | 0.1571 | 0.2493 |
9. | Autonomy potential | 0.1634 | 0.2970 | 0.5396 |
10. | Ecological potential | 0.2500 | 0.5000 | 0.2500 |
11. | Social potential | 0.3333 | 0.3333 | 0.3333 |
12. | Information potential | 0.3325 | 0.1396 | 0.5278 |
13. | Vector of global priorities | 0.2547 | 0.3855 | 0.3599 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kyrylych, T.; Povstenko, Y. Multi-Criteria Analysis of Startup Investment Alternatives Using the Hierarchy Method. Entropy 2023, 25, 723. https://doi.org/10.3390/e25050723
Kyrylych T, Povstenko Y. Multi-Criteria Analysis of Startup Investment Alternatives Using the Hierarchy Method. Entropy. 2023; 25(5):723. https://doi.org/10.3390/e25050723
Chicago/Turabian StyleKyrylych, Tamara, and Yuriy Povstenko. 2023. "Multi-Criteria Analysis of Startup Investment Alternatives Using the Hierarchy Method" Entropy 25, no. 5: 723. https://doi.org/10.3390/e25050723
APA StyleKyrylych, T., & Povstenko, Y. (2023). Multi-Criteria Analysis of Startup Investment Alternatives Using the Hierarchy Method. Entropy, 25(5), 723. https://doi.org/10.3390/e25050723