Quantum Image Encryption Based on Quantum DNA Codec and Pixel-Level Scrambling
Abstract
:1. Introduction
2. Related Work
2.1. Quantum Color Image Representation
2.2. DNA Coding Method and Operation
2.3. Quantum Hilbert Scrambling
2.4. Quantum XOR
3. Quantum Circuit Design
3.1. Quantum DNA Codec Simulator
3.2. Hilbert Image Scrambling Quantum Circuit
3.2.1. Initialization Module
3.2.2. Module
3.2.3. Even Module
4. Encryption and Decryption of Quantum Images
4.1. Encryption Process
4.2. Decryption Process
5. Safety Analysis
5.1. Histogram Analysis
5.2. Correlation Analysis of Adjacent Pixels
5.3. Key Sensitivity Analysis
5.4. Information Entropy
5.5. Key Space
5.6. Scheme Reversibility Verification
5.6.1. Peak Signal-to-Noise Ratio
5.6.2. Structural Similarity
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, Z.B.; Xu, M.Z.; Zhang, Y.N. Review of Quantum Image Processing. Arch. Comput. Methods Eng. 2022, 29, 737–761. [Google Scholar] [CrossRef]
- Nielsen, M.A.; Chuang, I. Quantum computation and quantum information. Am. J. Phys. 2002, 70, 558–559. [Google Scholar] [CrossRef]
- Hardy, L. Quantum mechanics, local realistic theories, and Lorentz-invariant realistic theories. Phys. Rev. Lett. 1992, 68, 2981. [Google Scholar] [CrossRef]
- Hardy, L. Nonlocality for two particles without inequalities for almost all entangled states. Phys. Rev. Lett. 1993, 71, 1665. [Google Scholar] [CrossRef]
- Shor, P.W. Algorithms for quantum computatio: Discrete logarithms and factoring. In Proceedings of the 35th Annual Symposium on Foundations of Computer Science, Santa Fe, NM, USA, 20–22 November 1994; pp. 124–134. [Google Scholar]
- Grover, L.K. A fast quantum mechanical algorithm for database search. In Proceedings of the Twenty Eighth Annual ACM Symposium on Theory of Computing, Philadelphia, PA, USA, 22–24 May 1996; pp. 212–219. [Google Scholar]
- Ashikhmin, A.; Litsyn, S.; Tsfasman, M.A. Asymptotically good quantum codes. Phys. Rev. A 2001, 63, 032311. [Google Scholar] [CrossRef]
- Ashikhmin, A.; Knill, E. Nonbinary quantum stabilizer codes. IEEE Trans. Inf. Theory 2001, 47, 3065–3072. [Google Scholar] [CrossRef]
- Trugenberger, C.A. Probabilistic quantum memories. Phys. Rev. Lett. 2001, 87, 067901. [Google Scholar] [CrossRef]
- Trugenberger, C.A. Phase transitions in quantum pattern recognition. Phys. Rev. Lett. 2002, 89, 277903. [Google Scholar] [CrossRef]
- Venegas-Andraca, S.E.; Bose, S. Storing, processing, and retrieving an image using quantum mechanics. Quantum Inf. Comput. 2003, 5105, 137–147. [Google Scholar]
- Klappenecker, A.; Rotteler, M. Discrete cosine transforms on quantum computers. In Proceedings of the 2nd International Symposium on Image and Signal Processing and Analysis, Pula, Croatia, 19–21 June 2001; pp. 464–468. [Google Scholar]
- Fijany, A.; Williams, C.P. Quantum wavelet transform: Fast algorithms and complete circuits. In Quantum Computing and Quantum Communications; Springer: Berlin/Heidelberg, Germnay, 1999; pp. 10–33. [Google Scholar]
- Beach, G.; Lomont, C.; Cohen, C. Quantum image processing (quip). In Proceedings of the 32nd Applied Imagery Pattern Recognition Workshop, Washington, DC, USA, 15–17 October 2003; pp. 39–44. [Google Scholar]
- Caraiman, S.; Manta, V.I. New applications of quantum algorithms to computer graphic: The quantum random sample consensus algorithm. In Proceedings of the 6th ACM Conference on Computing Frontiers, Ischia, Italy, 18–20 May 2009; pp. 81–88. [Google Scholar]
- Caraiman, S.; Manta, V.I. Image segmentation on a quantum computer. Quantum Inf. Process. 2015, 14, 1693–1715. [Google Scholar] [CrossRef]
- Castleman, K.R. Digital Image Processing; Prentice Hall Press: Hoboken, NJ, USA, 1996. [Google Scholar]
- Li, H.S.; Li, C.Y.; Chen, X.; Xia, H.Y. Quantum Image Encryption Algorithm Based on NASS. Int. J. Theor. Phys. 2018, 57, 3745–3760. [Google Scholar] [CrossRef]
- Li, H.S.; Li, C.Y.; Chen, X.; Xia, H.Y. Quantum image encryption based on phase-shift transform and quantum Haar wavelet packet transform. Mod. Phys. Lett. A 2019, 34, 1950214. [Google Scholar] [CrossRef]
- Yang, Y.G.; Xia, J.; Jia, X.; Zhang, H. Novel image encryption/decryption based on quantum Fourier transform and double phase encoding. Quantum Inf. Process. 2013, 12, 3477–3493. [Google Scholar] [CrossRef]
- Yan, F.; Iliyasu, A.M.; Venegas-Andraca, S.E. A survey of quantum image representations. Quantum Inf. Process. 2016, 15, 1–35. [Google Scholar] [CrossRef]
- Le, P.Q.; Dong, F.; Hirota, K. A flexible representation of quantum images for polynomial preparation, image compression, and processing operations. Quantum Inf. Process. 2011, 10, 63–84. [Google Scholar] [CrossRef]
- Zhang, Y.; Lu, K.; Gao, Y.H.; Wang, M. NEQ: A novel enhanced quantum representation of digital images. Quantum Inf. Process. 2013, 12, 2833–2860. [Google Scholar] [CrossRef]
- Sun, B.; Iliyasu, A.; Yan, F.; Dong, F.Y.; Hirota, K. An RGB multi-channel representation for images on quantum computers. J. Adv. Comput. Intell. Intell. Inform. 2013, 17, 404–415. [Google Scholar] [CrossRef]
- Li, H.S.; Zhu, Q.X.; Zhou, R.G.; Lan, S.; Yang, X.J. Multi-dimensional color image storage and retrieval for a normal arbitrary quantum superposition state. Quantum Inf. Process. 2014, 13, 991–1011. [Google Scholar] [CrossRef]
- Li, H.S.; Zhu, Q.X.; Lan, S.; Shen, C.Y.; Zhou, R.G.; Mo, J. Image storage, retrieval, compression and segmentation in a quantum system. Quantum Inf. Process. 2013, 12, 2269–2290. [Google Scholar] [CrossRef]
- Zhang, Y.; Lu, K.; Gao, Y.H.; Xu, K. A novel quantum representation for log-polar images. Quantum Inf. Process. 2013, 12, 3103–3126. [Google Scholar] [CrossRef]
- Zhang, J.L.; Huang, Z.J.; Li, X.; Wu, M.Q.; Wang, X.Y.; Dong, Y.M. Quantum Image Encryption Based on Quantum Image Decomposition. Int. J. Theor. Phys. 2021, 60, 2930–2942. [Google Scholar] [CrossRef]
- Zhou, N.R.; Hu, Y.Q.; Gong, L.H.; Li, G.Y. Quantum image encryption scheme with iterative generalized Arnold transforms and quantum image cycle shift operations. Quantum Inf. Process. 2017, 16, 164. [Google Scholar] [CrossRef]
- Adleman, L.M. Molecular computation of solutions to combinatorial problems. Science 1994, 266, 1021–1024. [Google Scholar] [CrossRef]
- Leier, A.; Richter, C.; Banzhaf, W.; Rauhe, H. Cryptography with DNA binary strands. Biosystems 2000, 57, 13–22. [Google Scholar] [CrossRef]
- Chang, W.L.; Guo, M.Y.; Ho, M.S.H. Fast parallel molecular algorithms for DNA-based computatio. factoring integers. IEEE Trans. Nanobiosci. 2005, 4, 149–163. [Google Scholar] [CrossRef]
- Basu, S.; Karuppiah, M.; Nasipuri, M.; Halder, A.K.; Radhakrishnan, N. Bio-inspired cryptosystem with DNA cryptography and neural networks. J. Syst. Archit. 2019, 94, 24–31. [Google Scholar] [CrossRef]
- Alghafis, A.; Firdousi, F.; Khan, M.; Batool, S.I.; Amin, M. An efficient image encryption scheme based on chaotic and Deoxyribonucleic acid sequencing. Math. Comput. Simul. 2020, 177, 441–466. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, J.D. A Multidimensional Chaotic Image Encryption Algorithm based on DNA Coding. Multimed. Tools Appl. 2020, 79, 21579–21601. [Google Scholar] [CrossRef]
- Wang, X.Y.; Zhang, Y.Q.; Bao, X.M. A novel chaotic image encryption scheme using DNA sequence operations. Opt. Lasers Eng. 2015, 73, 53–61. [Google Scholar] [CrossRef]
- Zhang, X.Q.; Wang, X.S. Multiple-image encryption algorithm based on DNA encoding and chaotic system. Multimed. Tools Appl. 2019, 78, 7841–7869. [Google Scholar] [CrossRef]
- Wang, Y.N.; Song, Z.Y.; Ma, H.Y. Color image encryption algorithm based on DNA code and alternating quantum random walk. Acta Phys. Sin. 2021, I, 230302. [Google Scholar] [CrossRef]
- Sang, J.Z.; Wang, S.; Li, Q. A novel quantum representation of color digital images. Quantum Inf. Process. 2017, 16, 42. [Google Scholar] [CrossRef]
- Arnold, V.I.; Avez, A. Ergodic Problems of Classical Mechanics; Benjamin: Amsterdam, The Netherlands, 1968; Volume 9. [Google Scholar]
- Wang, S.; Xu, X.S. A new algorithm of Hilbert scanning matrix and its MATLAB program. J. Image Graph. 2006, 11, 119–122. [Google Scholar]
- Jiang, N.; Wang, L.; Wu, W.Y. Quantum Hilbert Image Scrambling. Int. J. Theor. Phys. 2014, 53, 2463–2484. [Google Scholar] [CrossRef]
- Gong, L.H.; He, X.T.; Zhou, N.R. Quantum Image Encryption Algorithm Based on Quantum Image XOR Operations. Int. J. Theor. Phys. 2016, 55, 3234–3250. [Google Scholar] [CrossRef]
- Vagish, K.D.; Rajakumaran, C.; Kavitha, R. Chaos based encryption of quantum images. Multimed. Tools Appl. 2020, 79, 23849–23860. [Google Scholar]
- Li, C.; Yang, X.Z. An image encryption algorithm based on discrete fractional wavelet transform and quantum chaos. Optik 2022, 260, 169042. [Google Scholar] [CrossRef]
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
---|---|---|---|---|---|---|---|---|
00 | A | A | C | C | G | G | T | T |
01 | C | G | A | T | A | T | C | G |
10 | G | C | T | A | T | A | G | C |
11 | T | T | G | G | C | C | A | A |
Image | Channel | Horizontal | Vertical | Diagonal |
---|---|---|---|---|
R | 0.9849 | 0.9813 | 0.9833 | |
Pineapple | G | 0.9753 | 0.9763 | 0.9588 |
B | 0.9597 | 0.9550 | 0.9251 | |
R | 0.9835 | 0.9844 | 0.9753 | |
Rose | G | 0.9651 | 0.9643 | 0.9466 |
B | 0.9461 | 0.9446 | 0.9115 | |
R | 0.9539 | 0.9583 | 0.9256 | |
Plants | G | 0.9556 | 0.9563 | 0.9238 |
B | 0.9478 | 0.9540 | 0.9148 |
Image | Channel | Horizontal | Vertical | Diagonal |
---|---|---|---|---|
R | 0.0002 | 0.0045 | 0.0051 | |
C-Pineapple | G | 0.0026 | 0.0012 | 0.0044 |
B | 0.0037 | 0.0046 | 0.0029 | |
R | 0.0028 | 0.0049 | 0.0049 | |
C-Rose | G | 0.0055 | 0.0023 | 0.0086 |
B | 0.0034 | 0.0053 | 0.0014 | |
R | 0.0010 | 0.0081 | 0.0004 | |
C-Plants | G | 0.0052 | 0.0043 | 0.0025 |
B | 0.0057 | 0.0042 | 0.0033 |
Image | RGB Average NPCR | RGB Average UACI |
---|---|---|
C-Pineapple | 99.6138% | 33.4944% |
C-Rose | 99.6204% | 33.5147% |
C-Plants | 99.6097% | 33.5643% |
Ciphertext Image | R | G | B |
---|---|---|---|
Pineapple | 7.99925 | 7.99901 | 7.99921 |
Rose | 7.99910 | 7.99930 | 7.99889 |
Plants | 7.99922 | 7.99895 | 7.99912 |
Name | PSNR | SSIM |
---|---|---|
Pineapple | 43.7358 | 0.982998 |
Rose | 42.9974 | 0.979976 |
Plants | 43.6438 | 0.978102 |
Average | 43.4590 | 0.980358 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, J.; Wang, Y.; Song, Z.; Wang, S. Quantum Image Encryption Based on Quantum DNA Codec and Pixel-Level Scrambling. Entropy 2023, 25, 865. https://doi.org/10.3390/e25060865
Gao J, Wang Y, Song Z, Wang S. Quantum Image Encryption Based on Quantum DNA Codec and Pixel-Level Scrambling. Entropy. 2023; 25(6):865. https://doi.org/10.3390/e25060865
Chicago/Turabian StyleGao, Jie, Yinuo Wang, Zhaoyang Song, and Shumei Wang. 2023. "Quantum Image Encryption Based on Quantum DNA Codec and Pixel-Level Scrambling" Entropy 25, no. 6: 865. https://doi.org/10.3390/e25060865
APA StyleGao, J., Wang, Y., Song, Z., & Wang, S. (2023). Quantum Image Encryption Based on Quantum DNA Codec and Pixel-Level Scrambling. Entropy, 25(6), 865. https://doi.org/10.3390/e25060865