Self-Organization and Genomic Causality in Models of Morphogenesis
Abstract
:1. Introduction
2. Prominent Models of Self-Organization in Morphogenesis and Their Critics
2.1. D’Arcy Thompson: Mathematical Modeling of Organisms’ Growth and Form
2.2. Alan Turing’s Mathematical-Chemical Model of Self-Organization in Morphogenesis and Its Reception
3. The Recent Revival of Turing’s Theory of Morphogenesis and Other Theories of Self-Organization in Biology; Merging with Genomic Models
4. Models Based on the Concept of Genomic Causality in Development
4.1. Eric Davidson’s Model of a Complex Developmental Regulatory Gene Network (GRN)
4.2. Assessments and Further Developments of Davidson’s Developmental GRN Model
5. Conclusions
Funding
Conflicts of Interest
References
- Turing, A.M. The chemical basis of morphogenesis. Philos. Trans. R. Soc. Lond. B Biol. Sci. 1952, 237, 37–72. [Google Scholar]
- Wilson, E.B. The Cell in Development and Heredity, 3rd ed.; Macmillan: New York, NY, USA, 1928. [Google Scholar]
- Davidson, E.H. The Regulatory Genome. Gene Regulatory Networks in Development and Evolution, 1st ed.; Elsevier: San Diego, CA, USA, 2006. [Google Scholar]
- Peter, I.; Davidson, E.H. Genomic Control Process: Development and Evolution; Academic Press: Amsterdam, The Netherlands, 2015. [Google Scholar]
- Landge, A.N.; Jordan, B.M.; Diego, X.; Müller, P. Pattern formation mechanisms of self-organizing reaction-diffusion systems. Dev. Biol. 2020, 460, 2–11. [Google Scholar] [CrossRef] [PubMed]
- Brenner, S. Theoretical biology in the third millennium. Philos. Trans. R. Soc. London. Ser. B 1999, 354, 1963–1965. [Google Scholar] [CrossRef]
- Thompson, D. On Growth and Form, 2nd ed.; Cambridge University Press: Cambridge, UK, 1942. [Google Scholar]
- Deichmann, U. Crystals, colloids or molecules? Early controversies about the origin of life and synthetic life. Perspect. Biol. Med. 2012, 55, 521–542. [Google Scholar] [CrossRef]
- Loeb, J. Experimental study of the influence of environment on animals. In The Mechanistic Conception of Life; Fleming, D., Ed.; Harvard University Press: Cambridge, MA, USA, 1964; pp. 178–210. [Google Scholar]
- Roth, S. Mathematics and biology: A Kantian view on the history of pattern formation theory. Dev. Genes Evol. 2011, 221, 255–279. [Google Scholar] [CrossRef] [PubMed]
- Savin, T.; Kurpios, N.A.; Shyer, A.E.; Florescu, P.; Liang, H.; Mahadevan, L.; Tabin, C.J. On the growth and form of the gut. Nature 2011, 476, 57–62. [Google Scholar] [CrossRef]
- Briscoe, J.; Kicheva, A. The physics of development 100 years after D’Arcy Thompson’s “On Growth and Form”. Mech. Dev. 2017, 145, 26–31. [Google Scholar] [CrossRef]
- Eldredge, N.; Gould, S.J. Punctuated equilibria: An alternative to phyletic gradualism. In Models in Paleobiology; Schopf, T.J.M., Ed.; Freeman Cooper: San Francisco, CA, USA, 1972; pp. 82–115. [Google Scholar]
- Gould, S.J.; Lewontin, R. The spandrels of San Marco and the Panglossian paradigm: A critique of the adaptationist programme. Proc. R. Soc. Lond. B Biol. Sci. 1979, 205, 581–598. [Google Scholar]
- Saunders, P. Alan Turing and biology. IEEE Ann. Hist. Comput. 1993, 15, 33–36. [Google Scholar] [CrossRef]
- Hodges, A. Alan Turing: The Enigma; Princeton Univ. Press: Princeton, NJ, USA, 1983. [Google Scholar]
- Fox Keller, E. Making Sense of Life: Explaining Biological Development with Models, Metaphors and Machines; Harvard Univ. Press: Cambridge, MA, USA, 2003. [Google Scholar]
- Deichmann, U. The Concept of the Causal Role of Chromosomes and Genes in Heredity and Development: Opponents from Darwin to Lysenko. Perspect. Biol. Med. 2014, 57, 57–77. [Google Scholar] [CrossRef]
- Crick, F. On protein synthesis. Symp. Soc. Exp. Biol. 1958, 12, 138–163. [Google Scholar]
- Hallou, A. When Turing Meets Waddington: Theory of Mechanochemical Patterning in Biphasic Biological Tissues; Lecture at Gurdon Institute & Cavendish Laboratory: Cambridge, UK, 4 November 2021; Available online: https://talks.cam.ac.uk/talk/index/165172 (accessed on 1 December 2022.).
- Hogeweg, P. The roots of bioinformatics in theoretical biology. PLoS Comput. Biol. 2011, 7, e1002021. [Google Scholar] [CrossRef] [PubMed]
- Akam, M. Making stripes inelegantly. Nature 1989, 341, 282–283. [Google Scholar] [CrossRef] [PubMed]
- Meinhardt, H. Hierarchical inductions of cell states: A model for segmentation in Drosophila. J. Cell Sci. Suppl. 1986, 4, 357–381. [Google Scholar] [CrossRef] [PubMed]
- Lacalli, T.C.; Wilkinson, D.A.; Harrison, L.G. Theoretical aspects of stripe formation in relation to Drosophila segmentation. Development 1988, 4, 105–113. [Google Scholar] [CrossRef] [PubMed]
- Clark, E.; Peel, A.D.; Akam, M. Arthropod segmentation. Development 2019, 146, dev170480. [Google Scholar] [CrossRef]
- Davidson, E.H. Interview by Ute Deichmann. Dev. Biol. 2016, 212, S20–S29. [Google Scholar]
- Marcon, L.; Sharpe, J. Turing patterns in development: What about the horse part? Curr. Opin. Genet. Dev. 2012, 22, 578–584. [Google Scholar] [CrossRef]
- Zhang, H.T.; Hiiragi, T. Symmetry breaking in the mammalian embryo. Annu. Rev. Cell Dev. Biol. 2018, 34, 405–426. [Google Scholar] [CrossRef]
- Shvartsman, S.; (Princeton University, Princeton, NJ, USA). Personal communication, 2022.
- Karsenti, E. Self-organization in cell biology: A brief history. Nat. Rev. Mol. Cell Biol. 2008, 9, 255–262. [Google Scholar] [CrossRef]
- Misteli, T. The self-organizing genome: Principles of genome architecture and function. Cell 2020, 183, 28–45. [Google Scholar] [CrossRef]
- Misteli, T.; (Centre for Cancer Research, Bethesda, MD, USA). Personal communication, 2023.
- Briscoe, J. Understanding pattern formation in embryos: Experiment, theory, and simulation. J. Comput. Biol. 2019, 26, 696–702. [Google Scholar] [CrossRef] [PubMed]
- Briscoe, J.; (Francis Crick Institute, London, UK). Personal communication, 2023.
- Rothenberg, E.; (California Institute of Technology, Pasadena, CA, USA). Personal communication, 2023.
- Sharpe, J.; Raspopovic, L.; Marcon, L.; Russo, J. Digit patterning is controlled by a Bmp-Sox9-Wnt Turing network modulated by morphogen gradients. Science 2014, 345, 566–570. [Google Scholar]
- Economou, A.D.; Monk, N.A.M.; Jeremy, B.A.; Green, J.B.A. Perturbation analysis of a multi-morphogen Turing reaction-diffusion stripe patterning system reveals key regulatory interactions. Development 2020, 147, dev190553. [Google Scholar] [CrossRef] [PubMed]
- Deichmann, U. The idea of constancy in development and evolution—Scientific and philosophical perspectives. Biosystems 2022, 221, 104773. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; Ernberg, I.; Kauffman, S. Cancer attractors: A systems view of tumors from a gene network dynamics and developmental perspective. Semin. Cell Dev. Biol. 2009, 20, 869–876. [Google Scholar] [CrossRef] [PubMed]
- Huang, S. The molecular and mathematical basis of Waddington’s epigenetic landscape: A framework for post-Darwinian biology? Bioessays 2012, 34, 149–157. [Google Scholar] [CrossRef]
- Vittadello, S.T.; Leyshon, T.; Schnoerr, D.; Stumpf, M.P.H. Turing pattern design principles and their robustness. Philos. Trans. A Math. Phys. Eng. Sci. 2021, 379, 20200272. [Google Scholar] [CrossRef]
- Rothenberg, E.V. Eric Davidson: Steps to a gene regulatory network for development. Dev. Biol. 2016, 412, S7–S19. [Google Scholar] [CrossRef]
- Davidson, E.H. Genomics, “discovery science”, systems biology, and causal explanation. What really works? Perspect. Biol. Med. 2016, 58, 165–181. [Google Scholar] [CrossRef]
- Istrail, S. Eric Davidson’s regulatory genome for computer science: Causality, logic, and proof principles of the genomic cis-regulatory code. Comput. Biol. 2019, 26, 653–684. [Google Scholar] [CrossRef]
- Britten, R.J.; Davidson, E.H. Gene regulation for higher cells: A theory. Science 1969, 165, 349–357. [Google Scholar] [CrossRef] [PubMed]
- Davidson, E.H.; Erwin, D. Gene regulatory networks and the evolution of animal body plans. Science 2006, 311, 796–800. [Google Scholar] [CrossRef] [PubMed]
- Bolouri, H.; Davidson, E. Modeling transcriptional regulatory networks. Bioassays 2002, 24, 1118–1129. [Google Scholar] [CrossRef] [PubMed]
- Peter, I.S.; Faure, E.; Davidson, E.H. Predictive computation of genomic logic processing functions in embryonic development. Proc. Natl. Acad. Sci. USA 2012, 109, 16434–16442. [Google Scholar] [CrossRef]
- Deichmann, U. Hierarchy, determinism, and specificity in theories of development and evolution. Hist. Philos. Life Sci. 2017, 39, 33. [Google Scholar] [CrossRef]
- Erwin, D. Body Plans and Evolvability: How Does the Structure of the Regulatory Genome Deliver Novelty While Ensuring Continuity? In Proceedings of the international workshop Constancy and Plasticity in Development and Evolution, Jacques Loeb Centre, Ben-Gurion University of the Negev, Beer Sheva, Israel, 9–10 June 2022. [Google Scholar]
- Rothenberg, E.V.; Goettgens, B. How haematopoiesis research became a fertile ground for regulatory network biology as pioneered by Eric Davidson. Curr. Opini. Hematol. 2021, 28, 1–10. [Google Scholar] [CrossRef]
- Rothenberg, E.V. Logic and lineage impacts on functional transcription factor deployment for T-cell fate commitment. Biophys. J. 2021, 120, 4162–4181. [Google Scholar] [CrossRef]
- Shin, B.; Hosokawa, H.; Romero-Wolf, M.; Zhou, W.; Masuhara, K.; Tobin, V.R.; Levanon, D.; Groner, Y.; Rothenberg, E.V. Runx1 and Runx3 drive progenitor to T-lineage transcriptome conversion in mouse T cell commitment via dynamic genomic site switching. Proc. Natl. Acad. Sci. USA 2021, 118, e2019655118. [Google Scholar] [CrossRef]
- Rothenberg, E.V. Modular Organization and Mechanisms of the T-cell Specification Gene Regulatory Network. In Proceedings of the Conference Gene Regulatory Networks in Development and Disease, Oxford University, Oxford, UK, 13 April 2023. [Google Scholar]
- Rothenberg, E.V. Dynamic control of the T-cell specification gene regulatory network. Curr. Opin. Syst. Biol. 2019, 18, 62–76. [Google Scholar] [CrossRef]
- Felsenfeld, G. The evolution of epigenetics. Perspect. Biol. Med. 2014, 57, 130–146. [Google Scholar] [CrossRef] [PubMed]
- Shin, B.; Rothenberg, E.V. Multi-modular structure of the gene regulatory network for specification and commitment of murine T cells. Front. Immunol. 2023, 14, 1108368. [Google Scholar] [CrossRef] [PubMed]
- Sáez, M.; Briscoe, J.; Rand, D.A. Dynamical landscapes of cell fate decisions. Interface Focus 2022, 12, 20220002. [Google Scholar] [CrossRef] [PubMed]
- Jacob, F.; Monod, J. Genetic regulatory mechanisms in the synthesis of proteins. J. Mol. Biol. 1961, 3, 318–356. [Google Scholar] [CrossRef]
- Morange, M. The death of molecular biology? Hist. Philos. Life Sci. 2008, 30, 31–42. [Google Scholar] [PubMed]
- Jacob, F. The Logic of Life: A History of Heredity; Princeton Univ. Press: Princeton, NJ, USA, 1973. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deichmann, U. Self-Organization and Genomic Causality in Models of Morphogenesis. Entropy 2023, 25, 873. https://doi.org/10.3390/e25060873
Deichmann U. Self-Organization and Genomic Causality in Models of Morphogenesis. Entropy. 2023; 25(6):873. https://doi.org/10.3390/e25060873
Chicago/Turabian StyleDeichmann, Ute. 2023. "Self-Organization and Genomic Causality in Models of Morphogenesis" Entropy 25, no. 6: 873. https://doi.org/10.3390/e25060873
APA StyleDeichmann, U. (2023). Self-Organization and Genomic Causality in Models of Morphogenesis. Entropy, 25(6), 873. https://doi.org/10.3390/e25060873