Increasing Extractable Work in Small Qubit Landscapes
Abstract
:1. Introduction
Defining the Rules of the Game: Initial States and Evolution
- In small qubit machines, the occurrence of under application of a single dynamical map arising from an energy-preserving unitary on a focal qubit and reference thermal qubit.
- On the landscape, the length and distribution in time of intervals over which qubits exhibit .
2. Qubit Machines
2.1. Two-Qubit Machines
2.2. Three-Qubit Machines
2.3. Four-Qubit Machines
3. Qubit Landscapes
- The degree of initial temperature variation on landscape. We consider initializing the landscape with between one and seven hot qubits.
- The type of unitary. We consider two qubit conditional partial swaps, two qubit unconditional partial swaps and simultaneous partial swaps of two different qubit pairs.
3.1. Results: Connectivity and Initial Temperature Inhomogeneity
3.2. Results: Varying the Unitaries
- Simultaneous swap of two qubit pairs generated by interaction of the class , where is a four-qubit interaction in the energy subspace , with two pairs of qubit simultaneously being swapped. A representative unitary of this type is given in Equation (23).
- Conditional two-qubit swap given by , where is a four-qubit interaction that swaps populations between two qubits of a four-qubit system. For example, the rotation generated by the Hamiltonian interaction
- Unconditional two-qubit swap given by where is a two qubit interaction that swaps populations. For example the rotation in is generated by a Hamiltonian interaction of the type
3.3. Results: Persistence of
3.4. Contrast with Thermalizing Landscapes
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Accessible States and Correlations for Small Quantum Machines
Appendix A.1. Two Qubits
Appendix A.2. Three Qubits
References
- Jarzynski, C. Nonequilibrium Equality for Free Energy Differences. Phys. Rev. Lett. 1997, 78, 2690–2693. [Google Scholar] [CrossRef] [Green Version]
- Parrondo, J.; Horowitz, J.; Sagawa, T. Thermodynamics of information. Nat. Phys. 2015, 11, 131–139. [Google Scholar] [CrossRef]
- Kolchinsky, A.; Marvian, I.; Gokler, C.; Liu, Z.W.; Shor, P.; Shtanko, O.; Thompson, K.; Wolpert, D.; Lloyd, S. Maximizing Free Energy Gain. arXiv 2017, arXiv:1705.00041. [Google Scholar] [CrossRef]
- Skrzypczyk, P.; Short, A.J.; Popescu, S. Work extraction and thermodynamics for individual quantum systems. Nat. Commun. 2014, 5, 4185. [Google Scholar] [CrossRef] [Green Version]
- Esposito, M.; Van den Broeck, C. Second law and Landauer principle far from equilibrium. EPL Europhys. Lett. 2011, 95, 40004. [Google Scholar] [CrossRef] [Green Version]
- Kolchinsky, A. A Thermodynamic Threshold for Darwinian Evolution. arXiv 2022, arXiv:2112.02809. [Google Scholar] [CrossRef]
- Allahverdyan, A.E.; Balian, R.; Nieuwenhuizen, T.M. Maximal work extraction from finite quantum systems. Europhys. Lett. 2004, 67, 565. [Google Scholar] [CrossRef] [Green Version]
- Çakmak, B. Ergotropy from coherences in an open quantum system. Phys. Rev. E 2020, 102, 042111. [Google Scholar] [CrossRef]
- Perarnau-Llobet, M.; Hovhannisyan, K.V.; Huber, M.; Skrzypczyk, P.; Brunner, N.; Acín, A. Extractable Work from Correlations. Phys. Rev. X 2015, 5, 041011. [Google Scholar] [CrossRef] [Green Version]
- Bylicka, B.; Tukiainen, M.; Chruściński, D.; Piilo, J.; Maniscalco, S. Thermodynamic power of non-Markovianity. Sci. Rep. 2016, 6, 27989. [Google Scholar] [CrossRef] [Green Version]
- Andolina, G.M.; Keck, M.; Mari, A.; Campisi, M.; Giovannetti, V.; Polini, M. Extractable Work, the Role of Correlations, and Asymptotic Freedom in Quantum Batteries. Phys. Rev. Lett. 2019, 122, 047702. [Google Scholar] [CrossRef] [Green Version]
- Çakmak, B.; Pezzutto, M.; Paternostro, M.; Müstecaplıoğlu, O.E. Non-Markovianity, coherence, and system-environment correlations in a long-range collision model. Phys. Rev. A 2017, 96, 022109. [Google Scholar] [CrossRef] [Green Version]
- Rivas, Á.; Huelga, S.F.; Plenio, M.B. Entanglement and Non-Markovianity of Quantum Evolutions. Phys. Rev. Lett. 2010, 105, 050403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chruściński, D.; Maniscalco, S. Degree of Non-Markovianity of Quantum Evolution. Phys. Rev. Lett. 2014, 112, 120404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deutsch, J.M. Quantum statistical mechanics in a closed system. Phys. Rev. A 1991, 43, 2046–2049. [Google Scholar] [CrossRef]
- Srednicki, M. Chaos and quantum thermalization. Phys. Rev. E 1994, 50, 888–901. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rigol, M.; Dunjko, V.; Olshanii, M. Thermalization and its mechanism for generic isolated quantum systems. Nature 2008, 452, 854–858. [Google Scholar] [CrossRef] [Green Version]
- Anderson, P.W. Absence of Diffusion in Certain Random Lattices. Phys. Rev. 1958, 109, 1492–1505. [Google Scholar] [CrossRef] [Green Version]
- Imbrie, J.Z. On Many-Body Localization for Quantum Spin Chains. J. Stat. Phys. 2016, 163, 998–1048. [Google Scholar] [CrossRef] [Green Version]
- Rubio-Abadal, A.; Ippoliti, M.; Hollerith, S.; Wei, D.; Rui, J.; Sondhi, S.; Khemani, V.; Gross, C.; Bloch, I. Floquet prethermalization in a Bose-Hubbard system. Phys. Rev. X 2020, 10, 021044. [Google Scholar] [CrossRef]
- Ippoliti, M.; Gullans, M.J.; Gopalakrishnan, S.; Huse, D.A.; Khemani, V. Entanglement phase transitions in measurement-only dynamics. Phys. Rev. X 2021, 11, 011030. [Google Scholar] [CrossRef]
- Pai, S.; Pretko, M. Dynamical Scar States in Driven Fracton Systems. Phys. Rev. Lett. 2019, 123, 136401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sala, P.; Rakovszky, T.; Verresen, R.; Knap, M.; Pollmann, F. Ergodicity Breaking Arising from Hilbert Space Fragmentation in Dipole-Conserving Hamiltonians. Phys. Rev. X 2020, 10, 011047. [Google Scholar] [CrossRef] [Green Version]
- Khudorozhkov, A.; Tiwari, A.; Chamon, C.; Neupert, T. Hilbert space fragmentation in a 2D quantum spin system with subsystem symmetries. SciPost Phys. 2022, 13, 098. [Google Scholar] [CrossRef]
- Sels, D.; Polkovnikov, A. Thermalization of Dilute Impurities in One-Dimensional Spin Chains. Phys. Rev. X 2023, 13, 011041. [Google Scholar] [CrossRef]
- Nahum, A.; Ruhman, J.; Vijay, S.; Haah, J. Quantum Entanglement Growth under Random Unitary Dynamics. Phys. Rev. X 2017, 7, 031016. [Google Scholar] [CrossRef] [Green Version]
- Zhou, T.; Nahum, A. Emergent statistical mechanics of entanglement in random unitary circuits. Phys. Rev. B 2019, 99, 174205. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Sang, S.; Hsieh, T.H. Entanglement dynamics of noisy random circuits. Phys. Rev. B 2023, 107, 014307. [Google Scholar] [CrossRef]
- Dann, R.; Kosloff, R. Open system dynamics from thermodynamic compatibility. Phys. Rev. Res. 2021, 3, 023006. [Google Scholar] [CrossRef]
- Dann, R.; Megier, N.; Kosloff, R. Non-Markovian dynamics under time-translation symmetry. Phys. Rev. Res. 2022, 4, 043075. [Google Scholar] [CrossRef]
- Dann, R.; Kosloff, R. Quantum thermo-dynamical construction for driven open quantum systems. Quantum 2021, 5, 590. [Google Scholar] [CrossRef]
- Arrighi, P. An overview of Quantum Cellular Automata. arXiv 2019, arXiv:1904.12956. [Google Scholar] [CrossRef] [Green Version]
- Farrelly, T. A review of Quantum Cellular Automata. Quantum 2020, 4, 368. [Google Scholar] [CrossRef]
- Hillberry, L.E.; Jones, M.T.; Vargas, D.L.; Rall, P.; Halpern, N.Y.; Bao, N.; Notarnicola, S.; Montangero, S.; Carr, L.D. Entangled Quantum Cellular Automata, Physical Complexity, and Goldilocks Rules. Quantum Sci. Technol. 2021, 6, 045017. [Google Scholar] [CrossRef]
- Brandão, F.G.S.L.; Horodecki, M.; Oppenheim, J.; Renes, J.M.; Spekkens, R.W. Resource Theory of Quantum States Out of Thermal Equilibrium. Phys. Rev. Lett. 2013, 111, 250404. [Google Scholar] [CrossRef]
- Horodecki, M.; Oppenheim, J. Fundamental limitations for quantum and nanoscale thermodynamics. Nat. Commun. 2013, 4, 2059. [Google Scholar] [CrossRef] [Green Version]
- Ng, N.H.Y.; Woods, M.P. Resource Theory of Quantum Thermodynamics: Thermal Operations and Second Laws. In Fundamental Theories of Physics; Springer International Publishing: Berlin/Heidelberg, Germany, 2018; pp. 625–650. [Google Scholar] [CrossRef] [Green Version]
- Lostaglio, M.; Alhambra, Á.M.; Perry, C. Elementary Thermal Operations. Quantum 2018, 2, 52. [Google Scholar] [CrossRef] [Green Version]
- Roga, W.; Fannes, M.; Życzkowski, K. Davies maps for qubits and qutrits. Rep. Math. Phys. 2010, 66, 311–329. [Google Scholar] [CrossRef] [Green Version]
- Shu, A.; Cai, Y.; Seah, S.; Nimmrichter, S.; Scarani, V. Almost thermal operations: Inhomogeneous reservoirs. Phys. Rev. A 2019, 100, 042107. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez-Rosario, C.A.; Modi, K.; Meng Kuah, A.; Shaji, A.; Sudarshan, E.C.G. Completely positive maps and classical correlations. J. Phys. A Math. Theor. 2008, 41, 205301. [Google Scholar] [CrossRef]
- Carteret, H.A.; Terno, D.R.; Życzkowski, K. Dynamics beyond completely positive maps: Some properties and applications. Phys. Rev. A 2008, 77, 042113. [Google Scholar] [CrossRef]
- Müller-Hermes, A.; Reeb, D. Monotonicity of the Quantum Relative Entropy Under Positive Maps. arXiv 2015, arXiv:1512.06117. [Google Scholar] [CrossRef] [Green Version]
- McCloskey, R.; Paternostro, M. Non-Markovianity and system-environment correlations in a microscopic collision model. Phys. Rev. A 2014, 89, 052120. [Google Scholar] [CrossRef] [Green Version]
- Ciccarello, F.; Palma, G.M.; Giovannetti, V. Collision-model-based approach to non-Markovian quantum dynamics. Phys. Rev. A 2013, 87, 040103. [Google Scholar] [CrossRef]
- Kretschmer, S.; Luoma, K.; Strunz, W.T. Collision model for non-Markovian quantum dynamics. Phys. Rev. A 2016, 94, 012106. [Google Scholar] [CrossRef] [Green Version]
- Wootters, W.K. Entanglement of Formation of an Arbitrary State of Two Qubits. Phys. Rev. Lett. 1998, 80, 2245–2248. [Google Scholar] [CrossRef] [Green Version]
- Linden, N.; Popescu, S.; Skrzypczyk, P. How Small Can Thermal Machines Be? The Smallest Possible Refrigerator. Phys. Rev. Lett. 2010, 105, 130401. [Google Scholar] [CrossRef]
- Horowitz, J.M. Multipartite information flow for multiple Maxwell demons. J. Stat. Mech. Theory Exp. 2015, 2015, P03006. [Google Scholar] [CrossRef]
- Wolpert, D.H. Fluctuation Theorems for Multiple Co-Evolving Systems. arXiv 2021, arXiv:2003.11144. [Google Scholar] [CrossRef]
- Kliesch, M.; Riera, A. Properties of Thermal Quantum States: Locality of Temperature, Decay of Correlations, and More. In Thermodynamics in the Quantum Regime: Fundamental Aspects and New Directions; Binder, F., Correa, L.A., Gogolin, C., Anders, J., Adesso, G., Eds.; Springer International Publishing: Cham, Switzerland, 2018; Volume 195, p. 481. [Google Scholar] [CrossRef] [Green Version]
- Mehboudi, M.; Sanpera, A.; Correa, L.A. Thermometry in the quantum regime: Recent theoretical progress. J. Phys. A Math. Gen. 2019, 52, 303001. [Google Scholar] [CrossRef] [Green Version]
- Alipour, S.; Benatti, F.; Afsary, M.; Bakhshinezhad, F.; Ramezani, M.; Ala-Nissila, T.; Rezakhani, A.T. Temperature in Nonequilibrium Quantum Systems. arXiv 2021, arXiv:2105.11915. [Google Scholar] [CrossRef]
- Allahverdyan, A.E.; Gevorkian, S.G.; Dyakov, Y.A.; Wang, P.K. Thermodynamic definition of mean temperature. arXiv 2022, arXiv:2207.02343. [Google Scholar] [CrossRef]
- Riechers, P.M.; Gu, M. Initial-state dependence of thermodynamic dissipation for any quantum process. Phys. Rev. E 2021, 103, 042145. [Google Scholar] [CrossRef] [PubMed]
- Rau, J. Relaxation Phenomena in Spin and Harmonic Oscillator Systems. Phys. Rev. 1963, 129, 1880–1888. [Google Scholar] [CrossRef]
- Scarani, V.; Ziman, M.; Štelmachovič, P.; Gisin, N.; Bužek, V. Thermalizing Quantum Machines: Dissipation and Entanglement. Phys. Rev. Lett. 2002, 88, 097905. [Google Scholar] [CrossRef] [Green Version]
- Manatuly, A.; Niedenzu, W.; Román-Ancheyta, R.; çakmak, B.; Müstecaplıoǧlu, Ö.E.; Kurizki, G. Collectively enhanced thermalization via multiqubit collisions. Phys. Rev. E 2019, 99, 042145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lazer, D.; Friedman, A. The Network Structure of Exploration and Exploitation. Adm. Sci. Q. 2007, 52, 667–694. [Google Scholar] [CrossRef] [Green Version]
- Ben-David, S.; Childs, A.M.; Gilyén, A.; Kretschmer, W.; Podder, S.; Wang, D. Symmetries, graph properties, and quantum speedups. In Proceedings of the 2020 IEEE 61st Annual Symposium on Foundations of Computer Science (FOCS), Durham, NC, USA, 19 November 2020; pp. 649–660. [Google Scholar]
- Wei, T.C.; Nemoto, K.; Goldbart, P.M.; Kwiat, P.G.; Munro, W.J.; Verstraete, F. Maximal entanglement versus entropy for mixed quantum states. Phys. Rev. A 2003, 67, 022110. [Google Scholar] [CrossRef] [Green Version]
- Plenio, M.B.; Virmani, S.S. An Introduction to Entanglement Theory. In Quantum Information and Coherence; Springer: Berlin/Heidelberg, Germany, 2014; pp. 173–209. [Google Scholar]
- Horodecki, R.; Horodecki, P.; Horodecki, M.; Horodecki, K. Quantum entanglement. Rev. Mod. Phys. 2009, 81, 865. [Google Scholar] [CrossRef] [Green Version]
- Munro, W.J.; James, D.F.V.; White, A.G.; Kwiat, P.G. Maximizing the entanglement of two mixed qubits. Phys. Rev. A 2001, 64, 030302. [Google Scholar] [CrossRef] [Green Version]
- Horn, A. Doubly Stochastic Matrices and the Diagonal of a Rotation Matrix. Am. J. Math. 1954, 76, 620–630. [Google Scholar] [CrossRef]
- Schur, I. Uber eine klasse von mittelbildungen mit anwendungen auf der determinantentheorie. Sitzungsber. Berliner Mat. Ges 1923, 22, 51. [Google Scholar]
- Dym, H.; Katsnelson, V. Studies in Memory of Issai Schur; Progress in Mathematics; Springer: Berlin/Heidelberg, Germany, 2003; Volume 210. [Google Scholar]
- Loreaux, J.; Weiss, G. Majorization and a Schur-Horn Theorem for positive compact operators, the nonzero kernel case. J. Funct. Anal. 2015, 268, 703–731. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akhouri, U.; Shandera, S.; Yesmurzayeva, G. Increasing Extractable Work in Small Qubit Landscapes. Entropy 2023, 25, 947. https://doi.org/10.3390/e25060947
Akhouri U, Shandera S, Yesmurzayeva G. Increasing Extractable Work in Small Qubit Landscapes. Entropy. 2023; 25(6):947. https://doi.org/10.3390/e25060947
Chicago/Turabian StyleAkhouri, Unnati, Sarah Shandera, and Gaukhar Yesmurzayeva. 2023. "Increasing Extractable Work in Small Qubit Landscapes" Entropy 25, no. 6: 947. https://doi.org/10.3390/e25060947
APA StyleAkhouri, U., Shandera, S., & Yesmurzayeva, G. (2023). Increasing Extractable Work in Small Qubit Landscapes. Entropy, 25(6), 947. https://doi.org/10.3390/e25060947