Identifying Important Nodes in Trip Networks and Investigating Their Determinants
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Description
2.2. The Administrative Map
2.3. Network Construction
2.4. Important Node Indicators
3. Results
3.1. Travelling Distance Distribution
3.2. Comparison of the Trip Network Parameters
3.3. Impact of Important Nodes on Travelling Distance
3.4. Classification of Important Nodes and Analysis of Influencing Factors
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
NYC | New York City |
NYC_Long_Zexlusive | The internal exclusive hubs in NYC’s long-distance trip network |
NYC_Long_Zinlusive | The internal inclusive hubs in NYC’s long-distance trip network |
NYC_Long_Zextensive | The internal extensive hubs in NYC’s long-distance trip network |
NYC_Long_Bexlusive | The external exclusive hubs in NYC’s long-distance trip network |
NYC_Long_Binlusive | The external inclusive hubs in NYC’s long-distance trip network |
NYC_Long_Bextensive | The external extensive hubs in NYC’s long-distance trip network |
NYC_Short_Zexlusive | The internal exclusive hubs in NYC’s short-distance trip network |
NYC_Short_Zinlusive | The internal inclusive hubs in NYC’s short-distance trip network |
NYC_Short_Zextensive | The internal extensive hubs in NYC’s short-distance trip network |
NYC_Short_Bexlusive | The external exclusive hubs in NYC’s short-distance trip network |
NYC_Short_Binlusive | The external inclusive hubs in NYC’s short-distance trip network |
NYC_Short_Bextensive | The external extensive hubs in NYC’s short-distance trip network |
CD_Long_Zexlusive | The internal exclusive hubs in Chengdu’s long-distance trip network |
CD_Long_Zinlusive | The internal inclusive hubs in Chengdu’s long-distance trip network |
CD_Long_Zextensive | The internal extensive hubs in Chengdu’s long-distance trip network |
CD_Long_Bexlusive | The external exclusive hubs in Chengdu’s long-distance trip network |
CD_Long_Binlusive | The external inclusive hubs in Chengdu’s long-distance trip network |
CD_Long_Bextensive | The external extensive hubs in Chengdu’s long-distance trip network |
CD_Short_Zexlusive | The internal exclusive hubs in Chengdu’s short-distance trip network |
CD_Short_Zinlusive | The internal inclusive hubs in Chengdu’s short-distance trip network |
CD_Short_Zextensive | The internal extensive hubs in Chengdu’s short-distance trip network |
CD_Short_Bexlusive | The external exclusive hubs in Chengdu’s short-distance trip network |
CD_Short_Binlusive | The external inclusive hubs in Chengdu’s short-distance trip network |
CD_Short_Bextensive | The external extensive hubs in Chengdu’s short-distance trip network |
References
- Mokhtarian, P.L.; Salomon, I. How derived is the demand for travel? Some conceptual and measurement considerations. Transp. Res. Part A Policy Pract. 2001, 35, 695–719. [Google Scholar] [CrossRef] [Green Version]
- Ratti, C.; Sobolevsky, S.; Calabrese, F.; Andris, C.; Reades, J.; Martino, M.; Claxton, R.; Strogatz, S.H. Redrawing the map of Great Britain from a network of human interactions. PLoS ONE 2010, 5, e14248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thiemann, C.; Theis, F.; Grady, D.; Brune, R.; Brockmann, D. The structure of borders in a small world. PLoS ONE 2010, 5, e15422. [Google Scholar] [CrossRef] [PubMed]
- De Montis, A.; Caschili, S.; Chessa, A. Commuter networks and community detection: A method for planning sub regional areas. Eur. Phys. J. Spec. Top. 2013, 215, 75–91. [Google Scholar] [CrossRef]
- Liu, Y.; Sui, Z.; Kang, C.; Gao, Y. Uncovering patterns of inter-urban trip and spatial interaction from social media check-in data. PLoS ONE 2014, 9, e86026. [Google Scholar] [CrossRef]
- Li, Z.T.; Nie, W.P.; Cai, S.M.; Zhao, Z.D.; Zhou, T. Exploring the topological characteristics of urban trip networks based on taxi trajectory data. Phys. A Stat. Mech. Its Appl. 2023, 609, 128391. [Google Scholar] [CrossRef]
- Tabata, M.; Eshima, N.; Takagi, I. The nonlinear integro-partial differential equation describing the logistic growth of human population with migration. Appl. Math. Comput. 1999, 98, 169–183. [Google Scholar] [CrossRef]
- Brockmann, D.; Hufnagel, L.; Geisel, T. The scaling laws of human travel. Nature 2006, 439, 462–465. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- González, M.C.; Hidalgo, C.A.; Barabási, A.L. Understanding individual human mobility patterns. Nature 2008, 453, 779–782. [Google Scholar] [CrossRef]
- Malmgren, R.D.; Stouffer, D.B.; Campanharo, A.S.; Amaral, L.A.N. On universality in human correspondence activity. Science 2009, 325, 1696–1700. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Z.D.; Cai, S.M.; Huang, J.; Fu, Y.; Zhou, T. Scaling behavior of online human activity. EPL (Europhys. Lett.) 2012, 100, 48004. [Google Scholar] [CrossRef] [Green Version]
- Yan, X.Y.; Han, X.P.; Wang, B.H.; Zhou, T. Diversity of individual mobility patterns and emergence of aggregated scaling laws. Sci. Rep. 2013, 3, 2678. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, Z.D.; Yang, Z.; Zhang, Z.; Zhou, T.; Huang, Z.G.; Lai, Y.C. Emergence of scaling in human-interest dynamics. Sci. Rep. 2013, 3, 3472. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Z.D.; Gao, Y.C.; Cai, S.M.; Zhou, T. Dynamic patterns of academic forum activities. Phys. A Stat. Mech. Its Appl. 2016, 461, 117–124. [Google Scholar] [CrossRef] [Green Version]
- Song, C.; Koren, T.; Wang, P.; Barabási, A.L. Modelling the scaling properties of human mobility. Nat. Phys. 2010, 6, 818–823. [Google Scholar] [CrossRef] [Green Version]
- Zhou, J.; Fan, Z.Y.; Ng, K.T.; Tang, W.K. An attractiveness-based model for human mobility in all spatial ranges. New J. Phys. 2019, 21, 123043. [Google Scholar] [CrossRef]
- Ding, J.; Yang, C.; Wang, Y.; Li, P.; Wang, F.; Kang, Y.; Wang, H.; Liang, Z.; Zhang, J.; Han, P.; et al. Influential factors of intercity patient mobility and its network structure in China. Cities 2023, 132, 103975. [Google Scholar] [CrossRef]
- Kraemer, M.U.G.; Bisanzio, D.; Reiner, R.C.; Zakar, R.; Hawkins, J.B.; Freifeld, C.C.; Smith, D.L.; Hay, S.I.; Brownstein, J.S.; Perkins, T.A. Inferences about spatiotemporal variation in dengue virus transmission are sensitive to assumptions about human mobility: A case study using geolocated tweets from Lahore, Pakistan. Springer Open Choice 2018, 7, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Vilches, T.N.; Esteva, L.; Ferreira, C.P. Disease persistence and serotype coexistence: An expected feature of human mobility. Appl. Math. Comput. 2019, 355, 161–172. [Google Scholar] [CrossRef]
- Massaro, E.; Kondor, D.; Ratti, C. Assessing the interplay between human mobility and mosquito borne diseases in urban environments. Sci. Rep. 2019, 9, 16911. [Google Scholar] [CrossRef] [Green Version]
- Gan, Z.; Yang, M.; Feng, T.; Timmermans, H. Understanding urban mobility patterns from a spatiotemporal perspective: Daily ridership profiles of metro stations. Transportation 2020, 47, 315–336. [Google Scholar] [CrossRef]
- Procopiuck, M.; Segovia, Y.N.S.; Procopiuck, A.P.V. Urban cycling mobility: Management and urban institutional arrangements to support bicycle tourism activities—case study from Curitiba, Brazil. Transportation 2020, 48, 2055–2080. [Google Scholar] [CrossRef]
- Hawkins, J.; Habib, K.N. Heterogeneity in marginal value of urban mobility: Evidence from a large-scale household travel survey in the Greater Toronto and Hamilton Area. Transportation 2020, 47, 3091–3108. [Google Scholar] [CrossRef]
- Liu, X.; Gong, L.; Gong, Y.; Liu, Y. Revealing travel patterns and city structure with taxi trip data. J. Transp. Geogr. 2015, 43, 78–90. [Google Scholar] [CrossRef] [Green Version]
- Liang, X.; Zheng, X.; Lv, W.; Zhu, T.; Xu, K. The scaling of human mobility by taxis is exponential. Phys. A Stat. Mech. Its Appl. 2012, 391, 2135–2144. [Google Scholar] [CrossRef] [Green Version]
- Peng, C.; Jin, X.; Wong, K.C.; Shi, M.; Liò, P. Collective human mobility pattern from taxi trips in urban area. PLoS ONE 2012, 7, e34487. [Google Scholar]
- Tang, J.; Jiang, H.; Li, Z.; Li, M.; Liu, F.; Wang, Y. A two-layer model for taxi customer searching behaviors using GPS trajectory data. IEEE Trans. Intell. Transp. Syst. 2016, 17, 3318–3324. [Google Scholar] [CrossRef]
- Moreira-Matias, L.; Gama, J.; Ferreira, M.; Mendes-Moreira, J.; Damas, L. Predicting taxi–passenger demand using streaming data. IEEE Trans. Intell. Transp. Syst. 2013, 14, 1393–1402. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Ukkusuri, S.V.; Lu, J.J. Impacts of urban built environment on empty taxi trips using limited geolocation data. Transportation 2017, 44, 1–29. [Google Scholar] [CrossRef]
- Xu, J.; Rahmatizadeh, R.; Bölöni, L.; Turgut, D. Real-time prediction of taxi demand using recurrent neural networks. IEEE Trans. Intell. Transp. Syst. 2017, 19, 2572–2581. [Google Scholar] [CrossRef]
- Nie, W.P.; Zhao, Z.D.; Cai, S.M.; Zhou, T. Understanding the urban mobility community by taxi travel trajectory. Commun. Nonlinear Sci. Numer. Simul. 2021, 101, 105863. [Google Scholar] [CrossRef]
- Nie, W.P.; Cai, S.M.; Zhao, Z.D.; Zhou, T. Revealing mobility pattern of taxi movements with its travel trajectory. Phys. A Stat. Mech. Its Appl. 2022, 598, 127329. [Google Scholar] [CrossRef]
- Xia, F.; Wang, J.; Kong, X.; Wang, Z.; Li, J.; Liu, C. Exploring human mobility patterns in urban scenarios: A trajectory data perspective. IEEE Commun. Mag. 2018, 56, 142–149. [Google Scholar] [CrossRef]
- Perlman, J.; Roy, S.S. Analysis of human movement in the Miami metropolitan area utilizing Uber Movement data. Cities 2021, 119, 103376. [Google Scholar] [CrossRef]
- Yu, L.; Wang, F.; Yu, X.; Song, G. Urban land uses and traffic ‘source-sink areas’: Evidence from GPS-enabled taxi data in Shanghai. Landsc. Urban Plan. 2012, 106, 73–87. [Google Scholar]
- Nie, W.P.; Zhao, Z.D.; Cai, S.M.; Zhou, T. Simulating two-phase taxi service process by random walk theory. Chaos An Interdiscip. J. Nonlinear Sci. 2020, 30, 123121. [Google Scholar] [CrossRef]
- Opsahl, T.; Agneessens, F.; Skvoretz, J. Node centrality in weighted networks: Generalizing degree and shortest paths. Soc. Netw. 2010, 32, 245–251. [Google Scholar] [CrossRef]
- Klimm, F.; Borge-Holthoefer, J.; Wessel, N.; Kurths, J.; Zamora-López, G. Individual node’s contribution to the mesoscale of complex networks. New J. Phys. 2014, 16, 125006. [Google Scholar] [CrossRef] [Green Version]
- Tu, X.; Jiang, G.P.; Song, Y.; Zhang, X. Novel multiplex PageRank in multilayer networks. IEEE Access 2018, 6, 12530–12538. [Google Scholar] [CrossRef]
- Brookes, S.; Huynh, H.N. Transport networks and towns in Roman and early medieval England: An application of PageRank to archaeological questions. J. Archaeol. Sci. Rep. 2018, 17, 477–490. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Tang, J.; Zhao, C.; Gao, F. Improved centrality measure based on the adapted PageRank algorithm for urban transportation multiplex networks. Chaos Solitons Fractals 2023, 167, 112998. [Google Scholar] [CrossRef]
- Liu, R.; Gao, L.; Wu, J. Key nodes mining in transport networks based in PageRank algorithm. In Proceedings of the 2009 Chinese Control and Decision Conference, Guilin, China, 17–19 June 2009; pp. 4413–4416. [Google Scholar]
- Mukai, N. PageRank-based traffic simulation using taxi probe data. Procedia Comput. Sci. 2013, 22, 1156–1163. [Google Scholar] [CrossRef] [Green Version]
- Fan, C.; Zeng, L.; Sun, Y.; Liu, Y.Y. Finding key players in complex networks through deep reinforcement learning. Nat. Mach. Intell. 2020, 2, 317–324. [Google Scholar] [CrossRef] [PubMed]
- Helbing, D. Traffic and related self-driven many-particle systems. Rev. Mod. Phys. 2001, 73, 1067. [Google Scholar] [CrossRef] [Green Version]
- Barabasi, A.L. The origin of bursts and heavy tails in human dynamics. Nature 2005, 435, 207–211. [Google Scholar] [CrossRef] [Green Version]
- Jiang, B.; Yin, J.; Zhao, S. Characterizing the human mobility pattern in a large street network. Phys. Rev. E 2009, 80, 021136. [Google Scholar] [CrossRef] [Green Version]
- Rhee, I.; Shin, M.; Hong, S.; Lee, K.; Kim, S.J.; Chong, S. On the levy-walk nature of human mobility. IEEE/ACM Trans. Netw. 2011, 19, 630–643. [Google Scholar] [CrossRef]
- Watts, D.J.; Strogatz, S.H. Collective dynamics of ‘small-world’networks. Nature 1998, 393, 440–442. [Google Scholar] [CrossRef] [PubMed]
- Hogan, B. Analyzing social networks. In The Sage Handbook of Online Research Methods; Sage: Newcastle upon Tyne, UK, 2008; pp. 141–160. [Google Scholar]
- Barabási, A.L. Network science. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2013, 371, 20120375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barabási, A.L.; Albert, R. Emergence of scaling in random networks. Science 1999, 286, 509–512. [Google Scholar] [CrossRef] [Green Version]
- Albert, R.; Barabási, A.L. Statistical mechanics of complex networks. Rev. Mod. Phys. 2002, 74, 47. [Google Scholar] [CrossRef] [Green Version]
- Newman, M.E. The structure and function of complex networks. SIAM Rev. 2003, 45, 167–256. [Google Scholar] [CrossRef] [Green Version]
- Serrano, M.Á.; Krioukov, D.; Boguná, M. Self-similarity of complex networks and hidden metric spaces. Phys. Rev. Lett. 2008, 100, 078701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Chengdu | NYC | |||
---|---|---|---|---|
Type of Network | Short | Long | Short | Long |
Number of Nodes | 2394 | 2510 | 780 | 859 |
Number of Edges | 169,372 | 12,966 | 38,454 | 24,642 |
Average Weighted Strength of Node | 18,280.40 | 302.30 | 39,787.00 | 12,343.60 |
Average Shortest Path Length | 17.93 | 49.79 | 12.38 | 23.47 |
Average Clustering Coefficient | ||||
Assortativity Coefficient | −1.06 × 101 | −4.20 × 102 | −8.50 × 10−2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.-T.; Nie, W.-P.; Cai, S.-M.; Zhao, Z.-D.; Zhou, T. Identifying Important Nodes in Trip Networks and Investigating Their Determinants. Entropy 2023, 25, 958. https://doi.org/10.3390/e25060958
Li Z-T, Nie W-P, Cai S-M, Zhao Z-D, Zhou T. Identifying Important Nodes in Trip Networks and Investigating Their Determinants. Entropy. 2023; 25(6):958. https://doi.org/10.3390/e25060958
Chicago/Turabian StyleLi, Ze-Tao, Wei-Peng Nie, Shi-Min Cai, Zhi-Dan Zhao, and Tao Zhou. 2023. "Identifying Important Nodes in Trip Networks and Investigating Their Determinants" Entropy 25, no. 6: 958. https://doi.org/10.3390/e25060958
APA StyleLi, Z. -T., Nie, W. -P., Cai, S. -M., Zhao, Z. -D., & Zhou, T. (2023). Identifying Important Nodes in Trip Networks and Investigating Their Determinants. Entropy, 25(6), 958. https://doi.org/10.3390/e25060958