Mental Gravity: Depression as Spacetime Curvature of the Self, Mind, and Brain
Abstract
:1. Mental Gravity: Depression as Spacetime Curvature of the Conscious Self, Mind, and Brain
2. Overview of the Principle of Mental Gravity
2.1. Continuum of MG Experiences
2.2. Anxiety and Depression as Distortions of Lived Space and Time
2.3. The Internal Gravity Model
2.4. Mental Gravity as Simulated Graviception
2.5. Universal Verticality Value
2.6. UVV and the Continuum of MG experiences
2.7. Feeling and Acting “As Though” Affected by Strong Gravity
2.8. Summary of Mental Gravity
3. Neural Correlates of Mental Gravity
Mental “Mass”
4. Translating Basic Physics into a Psychological Gravity Model
5. The Einsteinian Mechanics of Non-Intuitive MG in Depression
6. Mental Gravity in Depression as Spacetime Curvature
6.1. Spacetime Curvature in General Relativity
6.2. Analogy between Mental and Physical Time Dilation
6.3. Spatial Distortions in Depression
6.4. Combined Spacetime Distortions in Depression
6.5. Curvature of Mental Spacetime
7. Curvature in the Brain’s Spacetime
7.1. Time Dilation in Le Bihan’s Relativistic Pseudo-Diffusion Framework
7.2. The “Common Currency” of the Brain’s Spacetime
8. Spacetime Curvature in Predictive Processing
9. Summary and Implications for the TTC
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Northoff, G.; Huang, Z. How do the brain’s time and space mediate consciousness and its different dimensions? Temporo-spatial theory of consciousness (TTC). Neurosci. Biobehav. Rev. 2017, 80, 630–645. [Google Scholar] [CrossRef] [PubMed]
- Kent, L. Mental Gravity: A novel theory of self, mind, and brain in depression. PsyArXiv, preprint. Available online: https://psyarxiv.com/76xmk/ (accessed on 11 August 2023).
- Lakoff, G.; Johnson, M. Metaphors We Live By; University of Chicago Press: Chicago, IL, USA, 2008. [Google Scholar]
- Bayne, T.; Hohwy, J.; Owen, A.M. Are there levels of consciousness? Trends Cogn. Sci. 2016, 20, 405–413. [Google Scholar] [CrossRef] [PubMed]
- Bayne, T.; Hohwy, J.; Owen, A.M. Reforming the taxonomy in disorders of consciousness. Ann. Neurol. 2017, 82, 866–872. [Google Scholar] [CrossRef] [PubMed]
- Whiteley, C.M.K. Depression as a Disorder of Consciousness. Br. J. Philos. Sci. 2021, in press. [CrossRef]
- Vogel, D.; Falter-Wagner, C.M.; Schoofs, T.; Krämer, K.; Kupke, C.; Vogeley, K. Flow and structure of time experience–concept, empirical validation and implications for psychopathology. Phenom. Cogn. Sci. 2018, 19, 235–258. [Google Scholar] [CrossRef]
- Thönes, S.; Stocker, K. A standard conceptual framework for the study of subjective time. Conscious. Cogn. 2019, 71, 114–122. [Google Scholar] [CrossRef] [PubMed]
- Thönes, S.; Oberfeld, D. Time perception in depression: A meta-analysis. J. Affect. Disord. 2015, 175, 359–372. [Google Scholar] [CrossRef] [PubMed]
- Le Bihan, D. On time and space in the brain: A relativistic pseudo-diffusion framework. Brain Multiphys. 2020, 1, 100016. [Google Scholar] [CrossRef]
- Einstein, A.; Fokker, A.D. Die nordströmsche gravitationstheorie vom standpunkt des absoluten differentialkalküls. Ann. Phys. 1914, 349, 321–328. [Google Scholar] [CrossRef]
- Newton, I. Philosophiae Naturalis Principia Mathematica (“Mathematical Principles of Natural Philosophy”); Jussu Societatis Regiæ ac Typis Josephi Streater: London, UK, 1687. [Google Scholar]
- Anderson, J.E. The Gravity Model. Annu. Rev. Econ. 2011, 3, 133–160. [Google Scholar] [CrossRef]
- Lewer, J.J.; Van den Berg, H. A gravity model of immigration. Econ. Lett. 2008, 99, 164–167. [Google Scholar] [CrossRef]
- Gallagher, M.; Kearney, B.; Ferrè, E.R. Where is my hand in space? The internal model of gravity influences proprioception. Biol. Lett. 2021, 17, 20210115. [Google Scholar] [CrossRef] [PubMed]
- Rousseau, C.; Barbiero, M.; Pozzo, T.; Papaxanthis, C.; White, O. Actual and Imagined Movements Reveal a Dual Role of the Insular Cortex for Motor Control. Cereb. Cortex 2020, 31, 2586–2594. [Google Scholar] [CrossRef] [PubMed]
- Jörges, B.; López-Moliner, J. Gravity as a Strong Prior: Implications for Perception and Action. Front. Hum. Neurosci. 2017, 11, 203. [Google Scholar] [CrossRef] [PubMed]
- Gallagher, M.; Arshad, I.; Ferrè, E.R. Gravity modulates behaviour control strategy. Exp. Brain Res. 2019, 237, 989–994. [Google Scholar] [CrossRef] [PubMed]
- Angelaki, D.E.; Shaikh, A.G.; Green, A.M.; Dickman, J.D. Neurons compute internal models of the physical laws of motion. Nature 2004, 430, 560–564. [Google Scholar] [CrossRef]
- McIntyre, J.; Zago, M.; Berthoz, A.; Lacquaniti, F. Does the brain model Newton’s laws? Nat. Neurosci. 2001, 4, 693–694. [Google Scholar] [CrossRef] [PubMed]
- Merfeld, D.M.; Zupan, L.; Peterka, R.J. Humans use internal models to estimate gravity and linear acceleration. Nature 1999, 398, 615–618. [Google Scholar] [CrossRef] [PubMed]
- Hameroff, S.; Penrose, R. Consciousness in the universe: A review of the ‘Orch OR’ theory. Phys. Life Rev. 2014, 11, 39–78. [Google Scholar] [CrossRef]
- Hartmann, M.; Lenggenhager, B.; Stocker, K. Happiness feels light and sadness feels heavy: Introducing valence-related bodily sensation maps of emotions. Psychol. Res. 2022, 87, 59–83. [Google Scholar] [CrossRef]
- Barkow, K.; Heun, R.; Bedirhan Üstün, T.; Berger, M.; Bermejo, I.; Gaebel, W.; Härter, M.; Schneider, F.; Stieglitz, R.-D.; Maier, W. Identification of somatic and anxiety symptoms which contribute to the detection of depression in primary health care. Eur. Psychiatry 2004, 19, 250–257. [Google Scholar] [CrossRef] [PubMed]
- Fuchs, T.; Schlimme, J.E. Embodiment and psychopathology: A phenomenological perspective. Curr. Opin. Psychiatr. 2009, 22, 570–575. [Google Scholar] [CrossRef] [PubMed]
- Kroenke, K.; Spitzer, R.L.; Williams, J.B.W. The PHQ-9. J. Gen. Intern. Med. 2001, 16, 606–613. [Google Scholar] [CrossRef] [PubMed]
- Buyukdura, J.S.; McClintock, S.M.; Croarkin, P.E. Psychomotor retardation in depression: Biological underpinnings, measurement, and treatment. Prog. Neuropsychopharmacol. Biol. Psychiatry 2011, 35, 395–409. [Google Scholar] [CrossRef] [PubMed]
- Bennabi, D.; Vandel, P.; Papaxanthis, C.; Pozzo, T.; Haffen, E. Psychomotor Retardation in Depression: A Systematic Review of Diagnostic, Pathophysiologic, and Therapeutic Implications. BioMed Res. Int. 2013, 2013, 158746. [Google Scholar] [CrossRef] [PubMed]
- McMullen, L.M.; Conway, J.B. Conventional METAPHORS for Depression; Psychology Press: New York, NY, USA, 2002; pp. 167–181. [Google Scholar]
- Ratcliffe, M. Experiences of Depression: A Study in Phenomenology; Oxford University Press: Oxford, UK, 2014. [Google Scholar]
- Huang, F.-Y.; Hsu, A.-L.; Chao, Y.-P.; Shang, C.M.-H.; Tsai, J.-S.; Wu, C.W. Mindfulness-based cognitive therapy on bereavement grief: Alterations of resting-state network connectivity associate with changes of anxiety and mindfulness. Hum. Brain Mapp. 2021, 42, 510–520. [Google Scholar] [CrossRef] [PubMed]
- Farmer, R.; Sundberg, N.D. Boredom proneness—The development and correlates of a new scale. J. Pers. Assess. 1986, 50, 4–17. [Google Scholar] [CrossRef] [PubMed]
- Tipples, J. Increased Frustration Predicts the Experience of Time Slowing-Down: Evidence from an Experience Sampling Study. Timing Time Percept. 2018, 6, 220. [Google Scholar] [CrossRef]
- Gaveau, J.; Berret, B.; Angelaki, D.E.; Papaxanthis, C. Direction-dependent arm kinematics reveal optimal integration of gravity cues. eLife 2016, 5, e16394. [Google Scholar] [CrossRef]
- Moskalewicz, M.; Fuchs, T. Psychotic disorders of space and time—A contribution of Erwin W. Straus. Front. Psychiatry 2023, 14, 1150005. [Google Scholar] [CrossRef]
- Coll-Florit, M.; Climent, S.; Sanfilippo, M.; Hernández-Encuentra, E. Metaphors of Depression. Studying First Person Accounts of Life with Depression Published in Blogs. Metaphor Symb. 2021, 36, 1–19. [Google Scholar] [CrossRef]
- Davey, C.G.; Harrison, B.J. The self on its axis: A framework for understanding depression. Transl. Psychiatry 2022, 12, 23. [Google Scholar] [CrossRef] [PubMed]
- White, O.; Gaveau, J.; Bringoux, L.; Crevecoeur, F. The gravitational imprint on sensorimotor planning and control. J. Neurophysiol. 2020, 124, 4–19. [Google Scholar] [CrossRef] [PubMed]
- Frank, S.M.; Greenlee, M.W. The parieto-insular vestibular cortex in humans: More than a single area? J. Neurophysiol. 2018, 120, 1438–1450. [Google Scholar] [CrossRef] [PubMed]
- Cullen, K.E. Vestibular processing during natural self-motion: Implications for perception and action. Nat. Rev. Neurosc. 2019, 20, 346–363. [Google Scholar] [CrossRef] [PubMed]
- Gallagher, M.; Ferrè, E.R. The aesthetics of verticality: A gravitational contribution to aesthetic preference. Q. J. Exp. Psychol. 2018, 71, 2655–2664. [Google Scholar] [CrossRef] [PubMed]
- Ferrè, E.R.; Lopez, C.; Haggard, P. Anchoring the Self to the Body: Vestibular Contribution to the Sense of Self. Psychol. Sci. 2014, 25, 2106–2108. [Google Scholar] [CrossRef] [PubMed]
- Pavlidou, A.; Ferrè, E.R.; Lopez, C. Vestibular stimulation makes people more egocentric. Cortex 2018, 101, 302–305. [Google Scholar] [CrossRef]
- Ferrè, E.R.; Frett, T.; Haggard, P.; Longo, M.R. A gravitational contribution to perceived body weight. Sci. Rep. 2019, 9, 11448. [Google Scholar] [CrossRef]
- Clément, G. Perception of time in microgravity and hypergravity during parabolic flight. Neuroreport 2018, 29, 247–251. [Google Scholar] [CrossRef]
- Ferre, E.; Longo, M.; Fiori, F.; Haggard, P. Vestibular modulation of spatial perception. Front. Hum. Neurosci. 2013, 7, 660. [Google Scholar] [CrossRef] [PubMed]
- Craig, A.D. How do you feel-now? The anterior insula and human awareness. Nat. Rev. Neurosc. 2009, 10, 59–70. [Google Scholar] [CrossRef] [PubMed]
- Lamm, C.; Singer, T. The role of anterior insular cortex in social emotions. Brain Struct. Funct. 2010, 214, 579–591. [Google Scholar] [CrossRef] [PubMed]
- Gu, X.; Hof, P.R.; Friston, K.J.; Fan, J. Anterior insular cortex and emotional awareness. J. Comp. Neurol. 2013, 521, 3371–3388. [Google Scholar] [CrossRef] [PubMed]
- Gu, X.; Gao, Z.; Wang, X.; Liu, X.; Knight, R.T.; Hof, P.R.; Fan, J. Anterior insular cortex is necessary for empathetic pain perception. Brain 2012, 135, 2726–2735. [Google Scholar] [CrossRef] [PubMed]
- Barrett, L.F.; Simmons, W.K. Interoceptive predictions in the brain. Nat. Rev. Neurosc. 2015, 16, 419. [Google Scholar] [CrossRef] [PubMed]
- Seth, A.K.; Friston, K.J. Active interoceptive inference and the emotional brain. Philos. Trans. R. Soc. B Biol. Sci. 2016, 371, 20160007. [Google Scholar] [CrossRef]
- Hamdi, S. A Cognitive Study of Happiness Metaphors in English, Tunisian Arabic and Spanish. Arab World Engl. J. 2016, 6, 132–143. [Google Scholar] [CrossRef]
- Lakoff, G. Explaining Embodied Cognition Results. Top. Cogn. Sci. 2012, 4, 773–785. [Google Scholar] [CrossRef]
- Dzokoto, V.A.; Okazaki, S. Happiness in the Eye and the Heart: Somatic Referencing in West African Emotion Lexica. J. Black Psychol. 2006, 32, 17–140. [Google Scholar] [CrossRef]
- Dzokoto, V.; Senft, N.; Kpobi, L.; Washington-Nortey, P.-M. Their Hands Have Lost Their Bones: Exploring Cultural Scripts in Two West African Affect Lexica. J. Psycholinguist. Res. 2016, 45, 1473–1497. [Google Scholar] [CrossRef] [PubMed]
- Smith, R.; Taylor, S.; Wilson, R.C.; Chuning, A.E.; Persich, M.R.; Wang, S.; Killgore, W.D.S. Lower Levels of Directed Exploration and Reflective Thinking Are Associated With Greater Anxiety and Depression. Front. Psychiatry 2022, 12, 782136. [Google Scholar] [CrossRef] [PubMed]
- Dehcheshmeh, T.F.; Majelan, A.S.; Maleki, B. Correlation between depression and posture (A systematic review). Curr. Psychol. 2023. [Google Scholar] [CrossRef]
- Feldman, R.; Schreiber, S.; Pick, C.; Been, E. Gait, balance and posture in major mental illnesses: Depression, anxiety and schizophrenia. Austin Med. Sci. 2020, 5, 1–6. [Google Scholar]
- Mechtcheriakov, S.; Berger, M.; Molokanova, E.; Holzmueller, G.; Wirtenberger, W.; Lechner-Steinleitner, S.; De Col, C.; Kozlovskaya, I.; Gerstenbrand, F. Slowing of human arm movements during weightlessness: The role of vision. Eur. J. Appl. Physiol. 2002, 87, 576–583. [Google Scholar] [CrossRef] [PubMed]
- Seth, A.K. Interoceptive inference, emotion, and the embodied self. Trends Cogn. Sci. 2013, 17, 565–573. [Google Scholar] [CrossRef]
- Molnar-Szakacs, I.; Uddin, L.Q. Anterior insula as a gatekeeper of executive control. Neurosci. Biobehav. Rev. 2022, 139, 104736. [Google Scholar] [CrossRef]
- Goulden, N.; Khusnulina, A.; Davis, N.J.; Bracewell, R.M.; Bokde, A.L.; McNulty, J.P.; Mullins, P.G. The salience network is responsible for switching between the default mode network and the central executive network: Replication from DCM. Neuroimage 2014, 99, 180–190. [Google Scholar] [CrossRef]
- Menon, V. 20 years of the default mode network: A review and synthesis. Neuron 2023, 111, 2469–2487. [Google Scholar] [CrossRef]
- Davey, C.G.; Harrison, B.J. The brain’s center of gravity: How the default mode network helps us to understand the self. World Psychiatry 2018, 17, 278–279. [Google Scholar] [CrossRef]
- Dennett, D. The Self as a Center of Narrative Gravity. In Self and Consciousness: Multiple Perspectives; Kessel, F.S., Cole, P.M., Johnson, D.L., Eds.; Lawrence Erlbaum: Hillsdale, NJ, USA, 1992. [Google Scholar]
- Williams, J.M.G.; Barnhofer, T.; Crane, C.; Herman, D.; Raes, F.; Watkins, E.; Dalgleish, T. Autobiographical memory specificity and emotional disorder. Psychol. Bull. 2007, 133, 122. [Google Scholar] [CrossRef]
- Barry, T.J.; Chiu, C.P.; Raes, F.; Ricarte, J.; Lau, H. The neurobiology of reduced autobiographical memory specificity. Trends Cogn. Sci. 2018, 22, 1038–1049. [Google Scholar] [CrossRef]
- Gibbs, B.R.; Rude, S.S. Overgeneral autobiographical memory as depression vulnerability. Cognit. Ther. Res. 2004, 28, 511–526. [Google Scholar] [CrossRef]
- Sumner, J.A.; Griffith, J.W.; Mineka, S. Overgeneral autobiographical memory as a predictor of the course of depression: A meta-analysis. Behav. Res. Ther. 2010, 48, 614–625. [Google Scholar] [CrossRef]
- Patel, T.; Brewin, C.R.; Wheatley, J.; Wells, A.; Fisher, P.; Myers, S. Intrusive images and memories in major depression. Behav. Res. Ther. 2007, 45, 2573–2580. [Google Scholar] [CrossRef]
- Joormann, J.; Gotlib, I.H. Updating the contents of working memory in depression: Interference from irrelevant negative material. J. Abnorm. Psychol. 2008, 117, 182–192. [Google Scholar] [CrossRef]
- Bradley, B.; Mathews, A. Negative self-schemata in clinical depression. Br. J. Clin. Psychol. 1983, 22, 173–181. [Google Scholar] [CrossRef]
- Peckham, A.D.; McHugh, R.K.; Otto, M.W. A meta-analysis of the magnitude of biased attention in depression. Depress. Anxiety 2010, 27, 1135–1142. [Google Scholar] [CrossRef]
- Einstein, A. Über die Spezielle und Allgemeine Relativitätstheorie; Henry Holt: New York, NY, USA, 1920. [Google Scholar]
- Einstein, A. Zum Relativitäts-Problem. Scientia 1914, 8, 337. [Google Scholar]
- Einstein, A. Sur le problème de la relativité. Scientia 1914, 8, 139–150. [Google Scholar]
- Kubricht, J.R.; Holyoak, K.J.; Lu, H. Intuitive Physics: Current Research and Controversies. Trends Cogn. Sci. 2017, 21, 749–759. [Google Scholar] [CrossRef] [PubMed]
- Kent, L.; Van Doorn, G.; Klein, B. Time dilation and acceleration in depression. Acta Psychol. 2019, 194, 77–86. [Google Scholar] [CrossRef] [PubMed]
- Stanghellini, G.; Ballerini, M.; Presenza, S.; Mancini, M.; Northoff, G.; Cutting, J. Abnormal time experiences in major depression: An empirical qualitative study. Psychopathology 2017, 50, 125–140. [Google Scholar] [CrossRef]
- Moskalewicz, M.; Schwartz, M.A. Temporal experience in mania. Phenomenol. Cogn. Sci. 2018, 19, 291–304. [Google Scholar] [CrossRef]
- Vogel, D.; Krämer, K.; Schoofs, T.; Kupke, C.; Vogeley, K. Disturbed Experience of Time in Depression—Evidence from Content Analysis. Front. Hum. Neurosci. 2018, 12, 66. [Google Scholar] [CrossRef]
- Jording, M.; Vogel, D.H.V.; Viswanathan, S.; Vogeley, K. Dissociating passage and duration of time experiences through the intensity of ongoing visual change. Sci. Rep. 2022, 12, 8226. [Google Scholar] [CrossRef] [PubMed]
- Droit-Volet, S.; Trahanias, P.; Maniadakis, M. Passage of time judgments in everyday life are not related to duration judgments except for long durations of several minutes. Acta Psychol. 2017, 173, 116–121. [Google Scholar] [CrossRef] [PubMed]
- Einstein, A.; Grossmann, M. Kovarianzeigenschaften der Feldgleichungen der auf die verallgemeinerte Relativitätstheorie gegründeten Gravitationstheorie. Z. Math. Phys. 1914, 63, 215–225. [Google Scholar]
- Misner, C.W.; Thorne, K.S.; Wheeler, J.A. Gravitation; W. H. Freeman & Company: San Francisco, CA, USA, 1973. [Google Scholar]
- White, O.; McIntyre, J.; Augurelle, A.-S.; Thonnard, J.-L. Do novel gravitational environments alter the grip-force/load-force coupling at the fingertips? Exp. Brain Res. 2005, 163, 324–334. [Google Scholar] [CrossRef]
- White, O. The brain adjusts grip forces differently according to gravity and inertia: A parabolic flight experiment. Front. Integr. Neurosci. 2015, 9, 7. [Google Scholar] [CrossRef]
- Arstila, V. Time Slows Down during Accidents. Front. Psychol. 2012, 3, 196. [Google Scholar] [CrossRef]
- Wearden, J. Passage of time judgements. Conscious. Cogn. 2015, 38, 165–171. [Google Scholar] [CrossRef] [PubMed]
- Hou, W.-L.; Yin, X.-L.; Yin, X.-Y.; Guan, L.-Y.; Cao, J.-Q.; Tang, Z.; Jiang, C.-X.; Xu, D.-W.; Yu, X.; Wang, J.; et al. Association between stereopsis deficits and attention decline in patients with major depressive disorder. Prog. Neuropsychopharmacol. Biol. Psychiatry 2021, 110, 110267. [Google Scholar] [CrossRef] [PubMed]
- Kunzendorf, R.G.; Flynn, H.; Shedlack, J.; Georges, M.; Deno, S.; Rosa, N.; Burns, J. Depression, unlike Normal Sadness, is Associated with a “Flatter” Self-Perception and a “Flatter” Phenomenal World. Imagin. Cogn. Pers. 2011, 30, 447–461. [Google Scholar] [CrossRef]
- Spreng, R.N.; Mar, R.A.; Kim, A.S. The common neural basis of autobiographical memory, prospection, navigation, theory of mind, and the default mode: A quantitative meta-analysis. J. Cogn. Neurosci. 2009, 21, 489–510. [Google Scholar] [CrossRef] [PubMed]
- Sheline, Y.I.; Barch, D.M.; Price, J.L.; Rundle, M.M.; Vaishnavi, S.N.; Snyder, A.Z.; Mintun, M.A.; Wang, S.; Coalson, R.S.; Raichle, M.E. The default mode network and self-referential processes in depression. Proc. Natl. Acad. Sci. USA 2009, 106, 1942–1947. [Google Scholar] [CrossRef] [PubMed]
- Sass, L.; Pienkos, E. Space, time, and atmosphere a comparative phenomenology of melancholia, mania, and schizophrenia, Part II. J. Conscious. Stud. 2013, 20, 131–152. [Google Scholar]
- Riskind, J.H.; Kleiman, E.M.; Seifritz, E.; Neuhoff, J. Influence of anxiety, depression and looming cognitive style on auditory looming perception. J. Anxiety Disord. 2014, 28, 45–50. [Google Scholar] [CrossRef]
- Barrett, L.F.; Quigley, K.S.; Hamilton, P. An active inference theory of allostasis and interoception in depression. Philos. Trans. R. Soc. B Biol. Sci. 2016, 371, 20160011. [Google Scholar] [CrossRef]
- Hohwy, J. The Self-Evidencing Brain. Noûs 2016, 50, 259–285. [Google Scholar] [CrossRef]
- Liberman, N.; Trope, Y.; Stephan, E. Psychological distance. In Social Psychology: Handbook of Basic Principles, 2nd ed.; The Guilford Press: New York, NY, USA, 2007; pp. 353–381. [Google Scholar]
- Trope, Y.; Liberman, N. Construal-level theory of psychological distance. Psychol. Rev. 2010, 117, 440. [Google Scholar] [CrossRef] [PubMed]
- Rinaldi, L.; Locati, F.; Parolin, L.; Girelli, L. Distancing the Present Self from the past and the Future: Psychological Distance in Anxiety and Depression. Q. J. Exp. Psychol. 2017, 70, 1106–1113. [Google Scholar] [CrossRef] [PubMed]
- Habermas, T.; Ott, L.-M.; Schubert, M.; Schneider, B.; Pate, A. Stuck in the past: Negative bias, explanatory style, temporal order, and evaluative perspectives in life narratives of clinically depressed individuals. Depress. Anxiety 2008, 25, E121–E132. [Google Scholar] [CrossRef] [PubMed]
- van Wassenhove, V. Minding time in an amodal representational space. Philos. Trans. R. Soc. B Biol. Sci. 2009, 364, 1815–1830. [Google Scholar] [CrossRef] [PubMed]
- Droit-Volet, S. Speeding up a master clock common to time, number and length? Behav. Process. 2010, 85, 126–134. [Google Scholar] [CrossRef]
- Stocker, K. The Theory of Cognitive Spacetime. Metaphor. Symb. 2014, 29, 71–93. [Google Scholar] [CrossRef]
- Dennett, D.C.; Kinsbourne, M. Time and the observer: The where and when of consciousness in the brain. Behav. Brain Sci. 1992, 15, 183–201. [Google Scholar] [CrossRef]
- Cabral, J.; Castaldo, F.; Vohryzek, J.; Litvak, V.; Bick, C.; Lambiotte, R.; Friston, K.; Kringelbach, M.L.; Deco, G. Metastable oscillatory modes emerge from synchronization in the brain spacetime connectome. Commun. Phys. 2022, 5, 184. [Google Scholar] [CrossRef]
- Nelson, B.; Sass, L.A. Towards integrating phenomenology and neurocognition: Possible neurocognitive correlates of basic self-disturbance in schizophrenia. Curr. Probl. Psychiatry 2017, 18, 184. [Google Scholar] [CrossRef]
- Northoff, G. Spatiotemporal psychopathology I: No rest for the brain’s resting state activity in depression? Spatiotemporal psychopathology of depressive symptoms. J. Affect. Disord. 2016, 190, 854–866. [Google Scholar] [CrossRef]
- Parkinson, C.; Liu, S.; Wheatley, T. A Common Cortical Metric for Spatial, Temporal, and Social Distance. J. Neurosci. 2014, 34, 1979–1987. [Google Scholar] [CrossRef]
- Braver, T.S. The variable nature of cognitive control: A dual mechanisms framework. Trends Cogn. Sci. 2012, 16, 106–113. [Google Scholar] [CrossRef] [PubMed]
- Andrews-Hanna, J.R.; Smallwood, J.; Spreng, R.N. The default network and self-generated thought: Component processes, dynamic control, and clinical relevance. Ann. N. Y. Acad. Sci. 2014, 1316, 29. [Google Scholar] [CrossRef]
- Northoff, G. Spatiotemporal Psychopathology II: How does a psychopathology of the brain’s resting state look like? Spatiotemporal approach and the history of psychopathology. J. Affect. Disord. 2016, 190, 867–879. [Google Scholar] [CrossRef] [PubMed]
- Vythilingam, M.; Heim, C.; Newport, J.; Miller, A.H.; Anderson, E.; Bronen, R.; Brummer, M.; Staib, L.; Vermetten, E.; Charney, D.S. Childhood trauma associated with smaller hippocampal volume in women with major depression. Am. J. Psychiatry 2002, 159, 2072–2080. [Google Scholar] [CrossRef] [PubMed]
- Videbech, P.; Ravnkilde, B. Hippocampal volume and depression: A meta-analysis of MRI studies. Am. J. Psychiatry 2004, 161, 1957–1966. [Google Scholar] [CrossRef] [PubMed]
- Morey, R.A.; Haswell, C.C.; Hooper, S.R.; De Bellis, M.D. Amygdala, Hippocampus, and Ventral Medial Prefrontal Cortex Volumes Differ in Maltreated Youth with and without Chronic Posttraumatic Stress Disorder. Neuropsychopharmacology 2016, 41, 791–801. [Google Scholar] [CrossRef] [PubMed]
- Frodl, T.; Schaub, A.; Banac, S.; Charypar, M.; Jäger, M.; Kümmler, P.; Bottlender, R.; Zetzsche, T.; Born, C.; Leinsinger, G.; et al. Reduced hippocampal volume correlates with executive dysfunctioning in major depression. J. Psychiatry Neurosci. 2006, 31, 316–323. [Google Scholar]
- Kempton, M.J.; Salvador, Z.; Munafò, M.R.; Geddes, J.R.; Simmons, A.; Frangou, S.; Williams, S.C. Structural neuroimaging studies in major depressive disorder: Meta-analysis and comparison with bipolar disorder. Arch. Gen. Psychiatry 2011, 68, 675–690. [Google Scholar] [CrossRef]
- Korgaonkar, M.S.; Fornito, A.; Williams, L.M.; Grieve, S.M. Abnormal structural networks characterize major depressive disorder: A connectome analysis. Biol. Psychiatry 2014, 76, 567–574. [Google Scholar] [CrossRef]
- Northoff, G.; Wainio-Theberge, S.; Evers, K. Is temporo-spatial dynamics the “common currency” of brain and mind? In Quest of “Spatiotemporal Neuroscience”. Phys. Life Rev. 2019, 33, 34–54. [Google Scholar] [CrossRef] [PubMed]
- Grimm, S.; Boesiger, P.; Beck, J.; Schuepbach, D.; Bermpohl, F.; Walter, M.; Ernst, J.; Hell, D.; Boeker, H.; Northoff, G. Altered negative BOLD responses in the default-mode network during emotion processing in depressed subjects. Neuropsychopharmacology 2009, 34, 932. [Google Scholar] [CrossRef] [PubMed]
- Wiebking, C.; Bauer, A.; De Greck, M.; Duncan, N.W.; Tempelmann, C.; Northoff, G. Abnormal body perception and neural activity in the insula in depression: An fMRI study of the depressed “material me”. World J. Biol. Psychiatry 2010, 11, 538–549. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Hu, X.; Han, J.; Scalabrini, A.; Hu, Y.; Hu, Z.; Tan, Z.; Zhang, J.; Northoff, G. Time is of essence—Abnormal time perspectives mediate the impact of childhood trauma on depression severity. J. Psychiatr. Res. 2020, 137, 534–541. [Google Scholar] [CrossRef] [PubMed]
- Manoliu, A.; Meng, C.; Brandl, F.; Doll, A.; Tahmasian, M.; Scherr, M.; Schwerthöffer, D.; Zimmer, C.; Förstl, H.; Bäuml, J. Insular dysfunction within the salience network is associated with severity of symptoms and aberrant inter-network connectivity in major depressive disorder. Front. Hum. Neurosci. 2014, 7, 930. [Google Scholar] [CrossRef] [PubMed]
- Trapp, N.T.; Bruss, J.E.; Manzel, K.; Grafman, J.; Tranel, D.; Boes, A.D. Large-scale lesion symptom mapping of depression identifies brain regions for risk and resilience. Brain 2022, 146, 1672–1685. [Google Scholar] [CrossRef] [PubMed]
- Friston, K.J.; Wiese, W.; Hobson, J.A. Sentience and the Origins of Consciousness: From Cartesian Duality to Markovian Monism. Entropy 2020, 22, 516. [Google Scholar] [CrossRef] [PubMed]
- Day, B.L.; Fitzpatrick, R.C. The vestibular system. Curr. Biol. 2005, 15, R583–R586. [Google Scholar] [CrossRef]
- Clark, J.E.; Watson, S.; Friston, K.J. What is mood? A computational perspective. Psychol. Med. 2018, 48, 2277–2284. [Google Scholar] [CrossRef]
- Schiller, D.; Yu, A.N.C.; Alia-Klein, N.; Becker, S.; Cromwell, H.C.; Dolcos, F.; Eslinger, P.J.; Frewen, P.; Kemp, A.H.; Pace-Schott, E.F.; et al. The Human Affectome. PsyArXiv, preprint. Available online: https://psyarxiv.com/9nu32/ (accessed on 11 August 2023).
- Sengupta, B.; Tozzi, A.; Cooray, G.K.; Douglas, P.K.; Friston, K.J. Towards a Neuronal Gauge Theory. PLoS Biol. 2016, 14, e1002400. [Google Scholar] [CrossRef]
- Angelaki, D.E.; Cullen, K.E. Vestibular System: The Many Facets of a Multimodal Sense. Annu. Rev. Neurosci. 2008, 31, 125–150. [Google Scholar] [CrossRef] [PubMed]
- Badcock, P.B.; Davey, C.G.; Whittle, S.; Allen, N.B.; Friston, K.J. The depressed brain: An evolutionary systems theory. Trends Cogn. Sci. 2017, 21, 182–194. [Google Scholar] [CrossRef] [PubMed]
- Badcock, P.B.; Friston, K.J.; Ramstead, M.J.D. The hierarchically mechanistic mind: A free-energy formulation of the human psyche. Phys. Life Rev. 2019, 31, 104–121. [Google Scholar] [CrossRef] [PubMed]
- Scalabrini, A.; Vai, B.; Poletti, S.; Damiani, S.; Mucci, C.; Colombo, C.; Zanardi, R.; Benedetti, F.; Northoff, G. All roads lead to the default-mode network—Global source of DMN abnormalities in major depressive disorder. Neuropsychopharmacology 2020, 45, 2058–2069. [Google Scholar] [CrossRef] [PubMed]
- Northoff, G. Why Do We Need Psychopathology? From the Brain’s Resting State to “Spatiotemporal Psychopathology” of Depression. In Understanding Depression: Volume 1. Biomedical and Neurobiological Background; Kim, Y.-K., Ed.; Springer: Singapore, 2018; pp. 145–152. [Google Scholar] [CrossRef]
- Ramstead, M.J.D.; Sakthivadivel, D.A.R.; Heins, C.; Koudahl, M.; Millidge, B.; Da Costa, L.; Klein, B.; Friston, K.J. On Bayesian Mechanics: A Physics of and by Beliefs. arXiv 2022, arXiv:2205.11543. [Google Scholar] [CrossRef] [PubMed]
- Hasson, U.; Yang, E.; Vallines, I.; Heeger, D.J.; Rubin, N. A Hierarchy of Temporal Receptive Windows in Human Cortex. J. Neurosci. 2008, 28, 2539. [Google Scholar] [CrossRef] [PubMed]
- Northoff, G.; Klar, P.; Bein, M.; Safron, A. As without, so within: How the brain’s temporo-spatial alignment to the environment shapes consciousness. Interface Focus 2023, 13, 20220076. [Google Scholar] [CrossRef]
- Friston, K. Dynamics versus dualism: Comment on “Is temporo-spatial dynamics the ‘common currency’ of brain and mind?” by Georg Northoff et al. Phys. Life Rev. 2020, 33, 70–72. [Google Scholar] [CrossRef]
- Arnaldo, I.; Corcoran, A.W.; Friston, K.J.; Ramstead, M.J.D. Stress and its sequelae: An active inference account of the etiological pathway from allostatic overload to depression. Neurosci. Biobehav. Rev. 2022, 135, 104590. [Google Scholar] [CrossRef]
Physical Gravity | Mental Gravity in Depression |
---|---|
Newtonian Gravity and Intuitive Physics | Simulation of Intuitive Physics |
Down or low: objects fall down towards the centre of gravity but require energy to ascend or escape gravity’s “pull”. Equivalent to height variable (H) in potential energy and power calculations. | Feeling “down” or “low”: the feeling of personal descent and of being stuck in a low state of being (i.e., effortless descent but effortful ascent). |
Heavy: the same physical mass weighs more in a stronger gravitational field. Equivalent to mass variable (m) in gravity, energy, and power calculations. | Feeling “heavy”: the feeling of increased bodily weight. |
Higher energy costs and restricted motion: due to increased weight in stronger gravitational fields, it either takes more energy to move or else movement takes longer. | Feeling fatigued and “slow”: psychomotor retardation as the result of increased mental effort/energy required to move the body, causing fatigue (or compensatory agitation) and also a sense that movement is restricted. |
General relativity | Experience of non-intuitive physics |
Spacetime curvature: acceleration in a gravitational field occurs when objects move along straight paths through spacetime curved by mass–energy causing gravitational time dilation, length contraction, and curved geodesics (trajectories). | Time dilation: passage of time in conscious experience is slow and expanded (i.e., dilated). Spatial contraction: the self and world are experienced as flat. Spacetime combined: psychological temporal distance is altered, cognitive spacetime is distorted, events are disordered, and trajectories of neural spatiotemporal dynamics are curved. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kent, L. Mental Gravity: Depression as Spacetime Curvature of the Self, Mind, and Brain. Entropy 2023, 25, 1275. https://doi.org/10.3390/e25091275
Kent L. Mental Gravity: Depression as Spacetime Curvature of the Self, Mind, and Brain. Entropy. 2023; 25(9):1275. https://doi.org/10.3390/e25091275
Chicago/Turabian StyleKent, Lachlan. 2023. "Mental Gravity: Depression as Spacetime Curvature of the Self, Mind, and Brain" Entropy 25, no. 9: 1275. https://doi.org/10.3390/e25091275
APA StyleKent, L. (2023). Mental Gravity: Depression as Spacetime Curvature of the Self, Mind, and Brain. Entropy, 25(9), 1275. https://doi.org/10.3390/e25091275