Remarks on Limit Theorems for the Free Quadratic Forms
Abstract
:1. Introduction
2. Preliminaries
2.1. Basic Notation and Terminology
2.2. Free Independence
2.3. Free Convolution and the Cauchy–Stieltjes Transform
2.4. Convergence in Distribution
2.5. Random Matrices
2.6. Combinatorics of Tangent Numbers
2.7. Complementary Facts
3. The Main Result
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Voiculescu, D. Addition of certain noncommuting random variables. J. Funct. Anal. 1986, 66, 323–346. [Google Scholar] [CrossRef]
- Voiculescu, D.V.; Dykema, K.J.; Nica, A. Free Random Variables; CRM Monograph Series; American Mathematical Society: Providence, RI, USA, 1992; Volume 1, pp. vi+70. [Google Scholar]
- Voiculescu, D. Limit laws for random matrices and free products. Invent. Math. 1991, 104, 201–220. [Google Scholar] [CrossRef]
- Nica, A.; Speicher, R. On the multiplication of free N-tuples of noncommutative random variables. Am. J. Math. 1996, 118, 799–837. [Google Scholar] [CrossRef]
- Bercovici, H.; Pata, V. Stable laws and domains of attraction in free probability theory. Ann. Math. 1999, 149, 1023–1060. [Google Scholar] [CrossRef]
- Ejsmont, W.; Lehner, F. The free tangent law. Adv. Appl. Math. 2020, 121, 102093, 32. [Google Scholar] [CrossRef]
- de Jong, P. A central limit theorem for generalized quadratic forms. Probab. Theory Relat. Fields 1987, 75, 261–277. [Google Scholar] [CrossRef]
- Dobrushin, R.L.; Major, P. Non-central limit theorems for nonlinear functionals of Gaussian fields. Z. Wahrsch. Verw. Geb. 1979, 50, 27–52. [Google Scholar] [CrossRef]
- Anh, V.; Leonenko, N.; Olenko, A.; Vaskovych, V. On rate of convergence in non-central limit theorems. Bernoulli 2019, 25, 2920–2948. [Google Scholar] [CrossRef]
- Ejsmont, W.; Hęćka, P. The Boolean quadratic forms and tangent law. Random Matrices Theory Appl. 2024, 13, 37. [Google Scholar] [CrossRef]
- Ejsmont, W.; Biernacki, M. Application of the free tangent law in quantification of household satisfaction from durable consumer goods. Entropy 2021, 23, 1109. [Google Scholar] [CrossRef]
- Graham, R.L.; Knuth, D.E.; Patashnik, O. Concrete Mathematics, 2nd ed.; Addison-Wesley Publishing Company: Reading, MA, USA, 1994; pp. xiv+657. [Google Scholar]
- Flajolet, P. Combinatorial aspects of continued fractions. Discret. Math. 1980, 32, 125–161. [Google Scholar] [CrossRef]
- Arnol’d, V.I. Bernoulli-Euler updown numbers associated with function singularities, their combinatorics and arithmetics. Duke Math. J. 1991, 63, 537–555. [Google Scholar] [CrossRef]
- Stanley, R.P. Enumerative Combinatorics; Cambridge Studies in Advanced Mathematics; Cambridge University Press: Cambridge, UK, 1999; Volume 62, pp. xii+581. [Google Scholar]
- Stanley, R.P. A survey of alternating permutations. Contemp. Math. 2010, 531, 165–196. [Google Scholar]
- André, D. Développements, par rapport au module, des fonctions elliptiques λ(x), μ(x) et de leurs puissances. Ann. Sci. École Norm. Sup. 1880, 9, 107–118. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ejsmont, W.; Biernacki, M.; Hęćka, P. Remarks on Limit Theorems for the Free Quadratic Forms. Entropy 2024, 26, 870. https://doi.org/10.3390/e26100870
Ejsmont W, Biernacki M, Hęćka P. Remarks on Limit Theorems for the Free Quadratic Forms. Entropy. 2024; 26(10):870. https://doi.org/10.3390/e26100870
Chicago/Turabian StyleEjsmont, Wiktor, Marek Biernacki, and Patrycja Hęćka. 2024. "Remarks on Limit Theorems for the Free Quadratic Forms" Entropy 26, no. 10: 870. https://doi.org/10.3390/e26100870
APA StyleEjsmont, W., Biernacki, M., & Hęćka, P. (2024). Remarks on Limit Theorems for the Free Quadratic Forms. Entropy, 26(10), 870. https://doi.org/10.3390/e26100870