First Hitting Times on a Quantum Computer: Tracking vs. Local Monitoring, Topological Effects, and Dark States
Abstract
:1. Introduction
2. First Passage Time of Random and Monitored Quantum Walks (Recap)
2.1. Path Definition and Measurement Protocol
2.2. Constructive and Destructive Interference
2.3. Topological Effects
2.4. Zeno Physics
3. Model and Measurement Protocols
3.1. Model
3.2. On-Site Protocol
3.3. Tracking Protocol
3.4. The Return Problem
3.5. Implementation on the Quantum Computer
3.6. Observables
4. Theory Recap
4.1. On-Site Protocol (Theory)
4.2. Tracking Protocol (Theory)
5. First Hitting Return Times on IBM Quantum Computers
5.1. On-Site Protocol (Experiment)
5.2. Tracking Protocol (Experiment)
6. Dark States on IBM Quantum Computers
6.1. Dark States for Zero Magnetic Flux
6.2. Dark States for a Finite Magnetic Flux
7. Finite Resolution
7.1. Broadening Effect
7.1.1. On-Site Protocol (Broadening)
7.1.2. Tracking Protocol (Broadening)
7.2. Slow Decay of the Null Measurement Probability
8. First Hitting Return Times with Depolarization Noise
9. Summary and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Correction Statement
Appendix A. Phase Factor Matching Diagram and Eigenstates
Appendix B. Details of the On-Site Protocol
Appendix C. Details of the Tracking Protocol
Appendix D. Simulated Detection Probability
References
- Aharonov, Y.; Davidovich, L.; Zagury, N. Quantum random walks. Phys. Rev. A 1993, 48, 1687–1690. [Google Scholar] [CrossRef] [PubMed]
- Kempe, J. Quantum random walks: An introductory overview. Contemp. Phys. 2003, 44, 307–327. [Google Scholar] [CrossRef]
- Portugal, R. Quantum Walks and Search Algorithms; Springer Publishing Company, Incorporated: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Krovi, H.; Brun, T.A. Hitting time for quantum walks on the hypercube. Phys. Rev. A 2006, 73, 032341. [Google Scholar] [CrossRef]
- Krovi, H.; Brun, T.A. Quantum walks with infinite hitting times. Phys. Rev. A 2006, 74, 042334. [Google Scholar] [CrossRef]
- Varbanov, M.; Krovi, H.; Brun, T.A. Hitting time for the continuous quantum walk. Phys. Rev. A 2008, 78, 022324. [Google Scholar] [CrossRef]
- Grünbaum, F.A.; Velázquez, L.; Werner, A.H.; Werner, R.F. Recurrence for Discrete Time Unitary Evolutions. Commun. Math. Phys. 2013, 320, 543–569. [Google Scholar] [CrossRef]
- Bourgain, J.; Grünbaum, F.A.; Velázquez, L.; Wilkening, J. Quantum Recurrence of a Subspace and Operator-Valued Schur Functions. Commun. Math. Phys. 2014, 329, 1031–1067. [Google Scholar] [CrossRef]
- Dhar, S.; Dasgupta, S.; Dhar, A.; Sen, D. Detection of a quantum particle on a lattice under repeated projective measurements. Phys. Rev. A 2015, 91, 062115. [Google Scholar] [CrossRef]
- Dhar, S.; Dasgupta, S.; Dhar, A. Quantum time of arrival distribution in a simple lattice model. J. Phys. A Math. Theor. 2015, 48, 115304. [Google Scholar] [CrossRef]
- Friedman, H.; Kessler, D.A.; Barkai, E. Quantum walks: The first detected passage time problem. Phys. Rev. E 2017, 95, 032141. [Google Scholar] [CrossRef]
- Walter, B.; Perfetto, G.; Gambassi, A. Thermodynamic phases in first detected return times of quantum many-body systems. arXiv 2023, arXiv:2311.05585. [Google Scholar]
- Purkayastha, A.; Imparato, A. Interaction-induced transition in quantum many-body detection probability. Phys. Rev. A 2024, 109, L020202. [Google Scholar] [CrossRef]
- Thiel, F.; Barkai, E.; Kessler, D.A. First Detected Arrival of a Quantum Walker on an Infinite Line. Phys. Rev. Lett. 2018, 120, 040502. [Google Scholar] [CrossRef] [PubMed]
- Yin, R.; Ziegler, K.; Thiel, F.; Barkai, E. Large fluctuations of the first detected quantum return time. Phys. Rev. Res. 2019, 1, 033086. [Google Scholar] [CrossRef]
- Thiel, F.; Mualem, I.; Meidan, D.; Barkai, E.; Kessler, D.A. Dark states of quantum search cause imperfect detection. Phys. Rev. Res. 2020, 2, 043107. [Google Scholar] [CrossRef]
- Modak, R.; Aravinda, S. Non-Hermitian description of sharp quantum resetting. arXiv 2023, arXiv:2303.03790. [Google Scholar]
- Kulkarni, M.; Majumdar, S.N. First detection probability in quantum resetting via random projective measurements. J. Phys. Math. Theor. 2023, 56, 385003. [Google Scholar] [CrossRef]
- Wang, Y.J.; Yin, R.Y.; Dou, L.Y.; Zhang, A.N.; Song, X.B. Quantum first detection of a quantum walker on a perturbed ring. Phys. Rev. Res. 2023, 5, 013202. [Google Scholar] [CrossRef]
- Meng, X.; Chen, L. The first detection time of one-dimensional systems with long-range interactions. Int. J. Mod. Phys. B 2024, 38, 2450190. [Google Scholar] [CrossRef]
- Kessler, D.A.; Barkai, E.; Ziegler, K. First-detection time of a quantum state under random probing. Phys. Rev. A 2021, 103, 022222. [Google Scholar] [CrossRef]
- Wanzambi, E.; Andersson, S. Quantum Computing: Implementing Hitting Time for Coined Quantum Walks on Regular Graphs. arXiv 2021, arXiv:2108.02723. [Google Scholar]
- Laneve, L.; Tacchino, F.; Tavernelli, I. On Hitting Times for General Quantum Markov Processes. Quantum 2023, 7, 1056. [Google Scholar] [CrossRef]
- Magniez, F.; Nayak, A.; Richter, P.C.; Santha, M. On the Hitting Times of Quantum Versus Random Walks. Algorithmica 2012, 63, 91–116. [Google Scholar] [CrossRef]
- Chen, X.X.; Wang, Y.J.; Zhang, A.N.; Meng, Z.; Wu, Q.Y.; Song, X.B.; Shi, X.S. Unmonitored and monitored recurrence in single-photon quantum walks. Phys. Rev. A 2024, 110, 012219. [Google Scholar] [CrossRef]
- Córcoles, A.D.; Takita, M.; Inoue, K.; Lekuch, S.; Minev, Z.K.; Chow, J.M.; Gambetta, J.M. Exploiting Dynamic Quantum Circuits in a Quantum Algorithm with Superconducting Qubits. Phys. Rev. Lett. 2021, 127, 100501. [Google Scholar] [CrossRef]
- Koh, J.M.; Sun, S.N.; Motta, M.; Minnich, A.J. Measurement-induced entanglement phase transition on a superconducting quantum processor with mid-circuit readout. Nat. Phys. 2023, 19, 1314–1319. [Google Scholar] [CrossRef]
- Redner, S. A Guide to First-Passage Processes; Cambridge University Press: Cambridge, UK, 2001. [Google Scholar] [CrossRef]
- Pólya, G. Über eine Aufgabe der Wahrscheinlichkeitsrechnung betreffend die Irrfahrt im Straßennetz. Math. Ann. 1921, 84, 149–160. [Google Scholar] [CrossRef]
- Yi, J. Shell game with a quantum pea. Europhys. Lett. 2024, 146, 20001. [Google Scholar] [CrossRef]
- Liu, Q.; Kessler, D.A.; Barkai, E. Designing exceptional-point-based graphs yielding topologically guaranteed quantum search. Phys. Rev. Res. 2023, 5, 023141. [Google Scholar] [CrossRef]
- Yin, R.; Barkai, E. Restart Expedites Quantum Walk Hitting Times. Phys. Rev. Lett. 2023, 130, 050802. [Google Scholar] [CrossRef]
- Štefaňák, M.; Jex, I.; Kiss, T. Recurrence and Pólya Number of Quantum Walks. Phys. Rev. Lett. 2008, 100, 020501. [Google Scholar] [CrossRef] [PubMed]
- Nitsche, T.; Barkhofen, S.; Kruse, R.; Sansoni, L.; Štefaňák, M.; Gábris, A.; Potoček, V.; Kiss, T.; Jex, I.; Silberhorn, C. Probing measurement-induced effects in quantum walks via recurrence. Sci. Adv. 2018, 4, eaar6444. [Google Scholar] [CrossRef] [PubMed]
- Kac, M. On Distributions of Certain Wiener Functionals. Trans. Am. Math. Soc. 1949, 65, 1–13. [Google Scholar] [CrossRef]
- Didi, A.; Barkai, E. Measurement-induced quantum walks. Phys. Rev. E 2022, 105, 054108. [Google Scholar] [CrossRef]
- Misra, B.; Sudarshan, E.C.G. The Zeno’s paradox in quantum theory. J. Math. Phys. 1977, 18, 756–763. [Google Scholar] [CrossRef]
- Thorbeck, T.; Xiao, Z.; Kamal, A.; Govia, L.C.G. Readout-Induced Suppression and Enhancement of Superconducting Qubit Lifetimes. Phys. Rev. Lett. 2024, 132, 090602. [Google Scholar] [CrossRef]
- Zimborás, Z.; Faccin, M.; Kádár, Z.; Whitfield, J.D.; Lanyon, B.P.; Biamonte, J. Quantum Transport Enhancement by Time-Reversal Symmetry Breaking. Sci. Rep. 2013, 3, 2361. [Google Scholar] [CrossRef] [PubMed]
- Bottarelli, A.; Frigerio, M.; Paris, M.G.A. Quantum routing of information using chiral quantum walks. AVS Quantum Sci. 2023, 5, 025001. [Google Scholar] [CrossRef]
- Annoni, E.; Frigerio, M.; Paris, M.G.A. Enhanced quantum transport in chiral quantum walks. Quantum Inf. Process. 2024, 23, 117. [Google Scholar] [CrossRef]
- Shapira, Y.; Manovitz, T.; Akerman, N.; Stern, A.; Ozeri, R. Quantum Simulations of Interacting Systems with Broken Time-Reversal Symmetry. Phys. Rev. X 2023, 13, 021021. [Google Scholar] [CrossRef]
- Cohen-Tannoudji, C.; Diu, B.; Laloë, F. Quantum Mechanics; Number v. 1 in A Wiley—Interscience publication; Wiley: Hoboken, NJ, USA, 1977. [Google Scholar]
- Vidal, G.; Dawson, C.M. Universal quantum circuit for two-qubit transformations with three controlled-NOT gates. Phys. Rev. A 2004, 69, 010301. [Google Scholar] [CrossRef]
- Koh, J.M.; Koh, D.E.; Thompson, J. Readout Error Mitigation for Mid-Circuit Measurements and Feedforward. arXiv 2024, arXiv:2406.07611. [Google Scholar]
- Gupta, R.S.; van den Berg, E.; Takita, M.; Riste, D.; Temme, K.; Kandala, A. Probabilistic error cancellation for dynamic quantum circuits. Phys. Rev. A 2024, 109, 062617. [Google Scholar] [CrossRef]
- Ezzell, N.; Pokharel, B.; Tewala, L.; Quiroz, G.; Lidar, D.A. Dynamical decoupling for superconducting qubits: A performance survey. Phys. Rev. Appl. 2023, 20, 064027. [Google Scholar] [CrossRef]
- Yin, R.; Wang, Q.; Tornow, S.; Barkai, E. Restart uncertainty relation for monitored quantum dynamics. arXiv 2024, arXiv:2401.01307. [Google Scholar]
- Tornow, S.; Ziegler, K. Measurement-induced quantum walks on an IBM quantum computer. Phys. Rev. Res. 2023, 5, 033089. [Google Scholar] [CrossRef]
- Urbanek, M.; Nachman, B.; Pascuzzi, V.R.; He, A.; Bauer, C.W.; de Jong, W.A. Mitigating Depolarizing Noise on Quantum Computers with Noise-Estimation Circuits. Phys. Rev. Lett. 2021, 127, 270502. [Google Scholar] [CrossRef]
- Chen, Y.T.; Farquhar, C.; Parrish, R.M. Low-rank density-matrix evolution for noisy quantum circuits. NPJ Quantum Inf. 2021, 7, 61. [Google Scholar] [CrossRef]
- Santini, A.; Solfanelli, A.; Gherardini, S.; Giachetti, G. Observation of partial and infinite-temperature thermalization induced by repeated measurements on a quantum hardware. J. Phys. Commun. 2023, 7, 065007. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Q.; Ren, S.; Yin, R.; Ziegler, K.; Barkai, E.; Tornow, S. First Hitting Times on a Quantum Computer: Tracking vs. Local Monitoring, Topological Effects, and Dark States. Entropy 2024, 26, 869. https://doi.org/10.3390/e26100869
Wang Q, Ren S, Yin R, Ziegler K, Barkai E, Tornow S. First Hitting Times on a Quantum Computer: Tracking vs. Local Monitoring, Topological Effects, and Dark States. Entropy. 2024; 26(10):869. https://doi.org/10.3390/e26100869
Chicago/Turabian StyleWang, Qingyuan, Silin Ren, Ruoyu Yin, Klaus Ziegler, Eli Barkai, and Sabine Tornow. 2024. "First Hitting Times on a Quantum Computer: Tracking vs. Local Monitoring, Topological Effects, and Dark States" Entropy 26, no. 10: 869. https://doi.org/10.3390/e26100869
APA StyleWang, Q., Ren, S., Yin, R., Ziegler, K., Barkai, E., & Tornow, S. (2024). First Hitting Times on a Quantum Computer: Tracking vs. Local Monitoring, Topological Effects, and Dark States. Entropy, 26(10), 869. https://doi.org/10.3390/e26100869