Study on the Microstructure, Mechanical Properties, and Corrosion Behavior of 900 °C-Annealed CoCrFeMnNiSix (X = 0, 0.3, 0.6, 0.9) High-Entropy Alloys
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Microstructural Analysis of CoCrFeMnNiSix HEAs After 900 °C Heat Treatment
3.2. CoCrFeMnNiSix HEAs Mechanical Properties After 900 °C Heat Treatment
3.3. Corrosion Resistance of CoCrFeMnNiSix After 900 °C Heat Treatment
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- George, E.P.; Raabe, D.; Ritchie, R.O. High-entropy alloys. Nat. Rev. Mater. 2019, 4, 515–534. [Google Scholar] [CrossRef]
- Ye, Y.F.; Wang, Q.; Lu, J.; Liu, C.T.; Yang, Y. High-entropy alloy: Challenges and prospects. Mater. Today 2016, 19, 349–362. [Google Scholar] [CrossRef]
- Chang, X.; Zeng, M.; Liu, K.; Fu, L. Phase Engineering of High-Entropy Alloys. Adv. Mater. 2020, 32, 1907226. [Google Scholar] [CrossRef] [PubMed]
- Hsu, W.L.; Tsai, C.W.; Yeh, A.C.; Yeh, J.W. Clarifying the four core effects of high-entropy materials. Nat. Rev. Chem. 2024, 8, 471–485. [Google Scholar] [CrossRef]
- Dąbrowa, J.; Zajusz, M.; Kucza, W.; Cieślak, G.; Berent, K.; Czeppe, T.; Kulik, T.; Danielewski, M. Demystifying the sluggish diffusion effect in HEAs. J. Alloys Compd. 2019, 783, 193–207. [Google Scholar] [CrossRef]
- Yang, Y.-C.; Liu, C.; Lin, C.-Y.; Xia, Z. Core effect of local atomic configuration and design principles in AlxCoCrFeNi high-entropy alloys. Scr. Mater. 2020, 178, 181–186. [Google Scholar] [CrossRef]
- Zhang, Z.; Ling, Y.; Hui, J.; Yang, F.; Zhang, X.; Tan, S.; Xie, Z.; Fang, F. Effect of C additions to the microstructure and wear behaviour of CoCrFeNi high-entropy alloy. Wear 2023, 530–531, 205032. [Google Scholar] [CrossRef]
- He, Z.; Jia, N.; Yan, H.; Shen, Y.; Zhu, M.; Guan, X.; Zhao, X.; Jin, S.; Sha, G.; Zhu, Y.; et al. Multi-heterostructure and mechanical properties of N-doped FeMnCoCr HEA. Int. J. Plast. 2021, 139, 102965. [Google Scholar] [CrossRef]
- Lou, B.-S.; Kan, F.-R.; Diyatmika, W.; Lee, J.-W. Property evaluation of TixZrNbTaFeBy high entropy alloy coatings: Effect of Ti and B contents. Surf. Coat. Technol. 2022, 434, 128180. [Google Scholar] [CrossRef]
- Xie, Y.; Cheng, H.; Tang, Q.; Chen, W.; Chen, W.; Dai, P. Effects of N addition on microstructure and mechanical properties of CoCrFeNiMn high entropy alloy produced by mechanical alloying and vacuum hot pressing sintering. Intermetallics 2018, 93, 228–234. [Google Scholar] [CrossRef]
- Zhang, L.; Lu, Y.; Amar, A.; Chen, X.; Ren, Z.; Wang, T.; Li, T. Designing Eutectic High-Entropy Alloys Containing Nonmetallic Elements. Adv. Eng. Mater. 2022, 24, 2200486. [Google Scholar] [CrossRef]
- Lee, H.; Sharma, A.; Ahn, B. Exploring strengthening mechanism of FeCoNiAl high-entropy alloy by non-metallic silicon addition produced via powder metallurgy. J. Alloys Compd. 2023, 947, 169545. [Google Scholar] [CrossRef]
- Wang, Y.; Li, G.; Qi, H.; Zhang, W.; Chen, R.; Su, R.; Yu, B.; Qu, Y. Effect of non-metallic carbon content on the microstructure and corrosion behavior of AlCoCrFeNi high-entropy alloys. Intermetallics 2024, 166, 108181. [Google Scholar] [CrossRef]
- Lv, S.; Zu, Y.; Chen, G.; Zhao, B.; Fu, X.; Zhou, W. A multiple nonmetallic atoms co-doped CrMoNbWTi refractory high-entropy alloy with ultra-high strength and hardness. Mater. Sci. Eng. A 2020, 795, 140035. [Google Scholar] [CrossRef]
- Chen, Q.-s.; Lu, Y.-p.; Dong, Y.; Wang, T.-m.; Li, T.-j. Effect of minor B addition on microstructure and properties of AlCoCrFeNi multi-compenent alloy. Trans. Nonferrous Met. Soc. China 2015, 25, 2958–2964. [Google Scholar] [CrossRef]
- Chen, J.; Yao, Z.; Wang, X.; Lu, Y.; Wang, X.; Liu, Y.; Fan, X. Effect of C content on microstructure and tensile properties of as-cast CoCrFeMnNi high entropy alloy. Mater. Chem. Phys. 2018, 210, 136–145. [Google Scholar] [CrossRef]
- Klimova, M.; Shaysultanov, D.; Semenyuk, A.; Zherebtsov, S.; Salishchev, G.; Stepanov, N. Effect of nitrogen on mechanical properties of CoCrFeMnNi high entropy alloy at room and cryogenic temperatures. J. Alloys Compd. 2020, 849, 156633. [Google Scholar] [CrossRef]
- Nagarjuna, C.; Dewangan, S.K.; Lee, H.; Madavali, B.; Ahn, B. Effect of Si alloying on the structural, thermal expansion, and magnetic properties of FeCoNiAlSix high-entropy alloys. J. Mater. Sci. 2024, 59, 4281–4292. [Google Scholar] [CrossRef]
- Guo, Y.; Peng, J.; Peng, S.; An, F.; Lu, W.; Li, Z. Improving oxidation resistance of TaMoZrTiAl refractory high entropy alloys via Nb and Si alloying. Corros. Sci. 2023, 223, 111455. [Google Scholar] [CrossRef]
- Shams, S.A.A.; Kim, G.; Lee, C.S.; Kim, H.S.; Jafarian, H.R. The astonishing effect of Si addition on low-cycle fatigue life in a metastable high-entropy alloy. Mater. Sci. Eng. A 2023, 880, 144985. [Google Scholar] [CrossRef]
- Jo, Y.H.; Yang, J.; Choi, W.-M.; Doh, K.-Y.; Lee, D.; Kim, H.S.; Lee, B.-J.; Sohn, S.S.; Lee, S. Body-centered-cubic martensite and the role on room-temperature tensile properties in Si-added SiVCrMnFeCo high-entropy alloys. J. Mater. Sci. Technol. 2021, 76, 222–230. [Google Scholar] [CrossRef]
- Yang, F.; Dong, L.; Cai, L.; Hu, X.; Fang, F. Mechanical properties of FeMnCoCr high entropy alloy alloyed with C/Si at low temperatures. J. Alloys Compd. 2021, 859, 157876. [Google Scholar] [CrossRef]
- Zhang, G.; Liu, H.; Zheng, K.; Tang, J.; Shi, Y.; Cai, B.; Zhang, M. Effects of carbon doping on annealing behavior of a CoCrFeNiMn high-entropy alloy. J. Mater. Res. Technol. 2023, 26, 2711–2723. [Google Scholar] [CrossRef]
- Shabani, A.; Toroghinejad, M.R.; Shafyei, A.; Logé, R.E. Evaluation of the mechanical properties of the heat treated FeCrCuMnNi high entropy alloy. Mater. Chem. Phys. 2019, 221, 68–77. [Google Scholar] [CrossRef]
- Xiang, T.; Zhao, M.; Du, P.; Xie, G. Heat treatment effects on microstructure and mechanical properties of TiZrNbTa high-entropy alloy. J. Alloys Compd. 2023, 930, 167408. [Google Scholar] [CrossRef]
- Shen, J.; Hu, J.; An, X. Regulation of phase partition and wear resistance for FeCoCrV high entropy alloy by heat treatment. Intermetallics 2024, 167, 108232. [Google Scholar] [CrossRef]
- Mahmoud, E.R.I.; Shaharoun, A.; Gepreel, M.A.; Ebied, S. Studying the Effect of Cold Rolling and Heat Treatment on the Microstructure and Mechanical Properties of the Fe36Mn20Ni20Cr16Al5Si3 High Entropy Alloy. Entropy 2022, 24, 1040. [Google Scholar] [CrossRef]
- Chen, L.; Bobzin, K.; Zhou, Z.; Zhao, L.; Öte, M.; Königstein, T.; Tan, Z.; He, D. Effect of Heat Treatment on the Phase Composition, Microstructure and Mechanical Properties of Al0.6CrFeCoNi and Al0.6CrFeCoNiSi0.3 High-Entropy Alloys. Metals 2018, 8, 974. [Google Scholar] [CrossRef]
- Li, Z.; Pang, J.; Liu, H.; Zhu, Z.; Zhang, L.; Wang, A.; Li, W.; Zhang, H.; Zhang, H. Combined effect of silicon doping and thermal treatment on microstructures and mechanical properties of Ti50Nb20V20Al10 refractory high-entropy alloy. J. Alloys Compd. 2024, 1005, 176075. [Google Scholar] [CrossRef]
- Kumar, A.; Swarnakar, A.K.; Basu, A.; Chopkar, M. Effects of processing route on phase evolution and mechanical properties of CoCrCuFeNiSix high entropy alloys. J. Alloys Compd. 2018, 748, 889–897. [Google Scholar] [CrossRef]
- Huang, L.; Wang, X.; Jia, F.; Zhao, X.; Huang, B.; Ma, J.; Wang, C. Effect of Si element on phase transformation and mechanical properties for FeCoCrNiSix high entropy alloys. Mater. Lett. 2020, 282, 128809. [Google Scholar] [CrossRef]
- Lin, T.; Feng, M.; Lian, G.; Lu, H.; Chen, C.; Huang, X. Effects of Si content on the microstructure and properties of CoCrFeMnNiSix high-entropy alloy coatings by laser cladding. Mater. Charact. 2024, 216, 114246. [Google Scholar] [CrossRef]
- Acciarri, M.D.; La Roca, P.; Guerrero, L.M.; Malamud, F.; Baruj, A.; Sade, M. Effects of Si Addition on the Martensitic Transformation, Structural and Thermodynamic Aspects in Fe45−xMn30Cr10Co15Six High Entropy Alloys. Met. Mater. Int. 2023, 30, 1282–1293. [Google Scholar] [CrossRef]
- Ren, H.; Chen, R.R.; Gao, X.F.; Liu, T.; Qin, G.; Wu, S.P.; Guo, J.J. Insights on mechanical properties of dual-phase high entropy alloys via Y introduction. J. Alloys Compd. 2022, 929, 167374. [Google Scholar] [CrossRef]
- Liao, Q.; Jing, T.; Wang, Y.; Peng, H.; Wen, Y. A CoCrFeNiMnSi high entropy alloy showing a good combination of shape memory effect and mechanical properties. J. Alloys Compd. 2022, 926, 166803. [Google Scholar] [CrossRef]
- Vida, Á.; Maksa, Z.; Molnár, D.; Huang, S.; Kovac, J.; Varga, L.K.; Vitos, L.; Chinh, N.Q. Evolution of the phase structure after different heat treatments in NiCoFeCrGa high entropy alloy. J. Alloys Compd. 2018, 743, 234–239. [Google Scholar] [CrossRef]
- Tong, C.; Chen, Y.; Chen, S.; Yeh, J.; Shun, T.; Tsau, C.; Lin, S.; Chang, S. Microstructure Characterization of AlxCoCrCuFeNi High-Entropy Alloy System with Multiprincipal Elements. Metall. Mater. Trans. A 2004, 36, 881–893. [Google Scholar] [CrossRef]
- Li, R.; Zong, Z.; Zhang, Z.; Zhang, R. Effect of Silicon addition on microstructure and properties of as-cast CoCrFeMnNi high entropy alloy. Heat Treat. Met. 2024, 49, 45–52. [Google Scholar] [CrossRef]
- Tian, F.; Varga, L.K.; Chen, N.; Shen, J.; Vitos, L. Empirical design of single phase high-entropy alloys with high hardness. Intermetallics 2015, 58, 1–6. [Google Scholar] [CrossRef]
- Liu, W.H.; Wu, Y.; He, J.Y.; Nieh, T.G.; Lu, Z.P. Grain growth and the Hall–Petch relationship in a high-entropy FeCrNiCoMn alloy. Scr. Mater. 2013, 68, 526–529. [Google Scholar] [CrossRef]
- Vo, T.D.; Tran, B.; Tieu, A.K.; Wexler, D.; Deng, G.; Nguyen, C. Effects of oxidation on friction and wear properties of eutectic high-entropy alloy AlCoCrFeNi2.1. Tribol. Int. 2021, 160, 107017. [Google Scholar] [CrossRef]
- Verma, A.; Tarate, P.; Abhyankar, A.; Mohape, M.; Gowtam, D.; Deshmukh, V.; Shanmugasundaram, T. High temperature wear in CoCrFeNiCux high entropy alloys. Scr. Mater. 2019, 161, 28–31. [Google Scholar] [CrossRef]
- Gopinath, V.M.; Arulvel, S. A review on the steels, alloys/high entropy alloys, composites and coatings used in high temperature wear applications. Mater. Today Proc. 2021, 43, 817–823. [Google Scholar] [CrossRef]
- Li, K.; Zhai, Y.; Lai, M.; Song, M.; Zou, S.; Huang, G.; Yaqoob, K.; Wang, Z.; Zhang, N. Corrosion of Eutectic High-Entropy Alloys: A Review. Crystals 2023, 13, 1231. [Google Scholar] [CrossRef]
- Li, T.; Wang, D.; Zhang, S.; Wang, J. Corrosion Behavior of High Entropy Alloys and Their Application in the Nuclear Industry—An Overview. Metals 2023, 13, 363. [Google Scholar] [CrossRef]
- Wang, Y.; Jin, J.; Zhang, M.; Wang, X.; Gong, P.; Zhang, J.; Liu, J. Effect of the grain size on the corrosion behavior of CoCrFeMnNi HEAs in a 0.5 M H2SO4 solution. J. Alloys Compd. 2021, 858, 157712. [Google Scholar] [CrossRef]
- Gerard, A.Y.; Han, J.; McDonnell, S.J.; Ogle, K.; Kautz, E.J.; Schreiber, D.K.; Lu, P.; Saal, J.E.; Frankel, G.S.; Scully, J.R. Aqueous passivation of multi-principal element alloy Ni38Fe20Cr22Mn10Co10: Unexpected high Cr enrichment within the passive film. Acta Mater. 2020, 198, 121–133. [Google Scholar] [CrossRef]
- Jorcin, J.-B.; Orazem, M.E.; Pébère, N.; Tribollet, B. CPE analysis by local electrochemical impedance spectroscopy. Electrochim. Acta 2006, 51, 1473–1479. [Google Scholar] [CrossRef]
- Brug, G.; Eeden, A.; Sluyters-Rehbach, M.; Sluyters, J. The analysis of electrode impedances complicated by the presence of a constant phase element. J. Electroanal. Chem. Interfacial Electrochem. 1984, 25, 275–295. [Google Scholar] [CrossRef]
- Torbati-Sarraf, H.; Shabani, M.; Jablonski, P.D.; Pataky, G.J.; Poursaee, A. The influence of incorporation of Mn on the pitting corrosion performance of CrFeCoNi High Entropy Alloy at different temperatures. Mater. Des. 2019, 184, 108170. [Google Scholar] [CrossRef]
Silicon Content | 0 | 0.3 | 0.6 | 0.9 |
---|---|---|---|---|
Average grain size (μm) | 1141.94 | 393.25 | 249.96 | 203.25 |
Si Contents | Regions | Elements | |||||
---|---|---|---|---|---|---|---|
Co | Cr | Fe | Mn | Ni | Si | ||
0 | 1 | 19.89 | 19.68 | 20.74 | 19.34 | 20.35 | / |
0.3 | 2 3 | 19.07 19.25 | 19.04 19.48 | 19.66 19.22 | 19.05 19.44 | 19.45 19.27 | 3.74 3.35 |
0.6 | 4 5 | 19.45 14.08 | 19.15 15.58 | 20.60 14.87 | 16.34 18.96 | 17.68 21.25 | 6.78 15.26 |
0.9 | 6 7 8 9 | 19.47 15.22 13.66 14.74 | 18.03 16.23 13.85 18.74 | 21.17 15.59 10.98 28.87 | 16.86 17.64 20.81 14.83 | 16.86 19.55 20.10 14.19 | 7.62 15.76 20.60 9.62 |
Silicon Content | 0 | 0.3 | 0.6 | 0.9 |
---|---|---|---|---|
Breaking strain | >60% | >60% | 33.7% | 6.4% |
Yield strength/MPa | 805.3 | 1246.9 | 1327.5 | 841.5 |
Compressive strength/MPa | 1367 | 1813.8 | 1990.3 | 1154.3 |
Si Content | 0 | 0.3 | 0.6 | 0.9 |
---|---|---|---|---|
Wear mark width l/mm | 1.96 | 1.42 | 1.13 | 0.75 |
Wear mark diameter D/mm | 8.01 | 7.92 | 7.85 | 7.78 |
Volume wear/mm3 | 5.26 | 1.98 | 0.99 | 0.29 |
Wear resistance/mm−1 | 0.11 | 0.13 | 0.16 | 0.21 |
Si Content | Ecorr (mV) | Icorr (μA/cm−2) | Epit (mV) | Kcorr (mm/year) |
---|---|---|---|---|
0 | −262.620 | 0.765 | 21.408 | 0.01996 |
0.3 | −333.943 | 1.276 | 10.188 | 0.03171 |
0.6 | −213.627 | 0.230 | 157.649 | 0.00320 |
0.9 | −289.757 | 0.342 | 44.250 | 0.00961 |
Si Content | Rs (ohm) | Rct (ohm) | CPE | |
---|---|---|---|---|
Y0 (F/cm2) | N | |||
0 | 9.460 | 42,145 | 4.6156 × 10−5 | 0.89 |
0.3 | 8.083 | 23,563 | 5.6727 × 10−5 | 0.91 |
0.6 | 8.239 | 1.2915 × 105 | 4.4024 × 10−5 | 0.94 |
0.9 | 7.986 | 97,547 | 3.5206 × 10−5 | 0.93 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, C.; Li, R.; Zong, Z.; Li, W.; Zhang, Y.; Li, T. Study on the Microstructure, Mechanical Properties, and Corrosion Behavior of 900 °C-Annealed CoCrFeMnNiSix (X = 0, 0.3, 0.6, 0.9) High-Entropy Alloys. Entropy 2024, 26, 897. https://doi.org/10.3390/e26110897
Jiang C, Li R, Zong Z, Li W, Zhang Y, Li T. Study on the Microstructure, Mechanical Properties, and Corrosion Behavior of 900 °C-Annealed CoCrFeMnNiSix (X = 0, 0.3, 0.6, 0.9) High-Entropy Alloys. Entropy. 2024; 26(11):897. https://doi.org/10.3390/e26110897
Chicago/Turabian StyleJiang, Chunxia, Rongbin Li, Zaikang Zong, Wenge Li, Yong Zhang, and Tongyao Li. 2024. "Study on the Microstructure, Mechanical Properties, and Corrosion Behavior of 900 °C-Annealed CoCrFeMnNiSix (X = 0, 0.3, 0.6, 0.9) High-Entropy Alloys" Entropy 26, no. 11: 897. https://doi.org/10.3390/e26110897
APA StyleJiang, C., Li, R., Zong, Z., Li, W., Zhang, Y., & Li, T. (2024). Study on the Microstructure, Mechanical Properties, and Corrosion Behavior of 900 °C-Annealed CoCrFeMnNiSix (X = 0, 0.3, 0.6, 0.9) High-Entropy Alloys. Entropy, 26(11), 897. https://doi.org/10.3390/e26110897