Basic Cells Special Features and Their Influence on Global Transport Properties of Long Periodic Structures
Abstract
:1. Introduction
2. Brief Review on the Approach Used to Study Transport in 1D Periodic Structures
Approximating a Rapidly Decaying Potential Through Compact Support Potentials
3. Certain Special s and Their CBBs Description
3.1. The Gaussian Potential
3.2. The Pöschl–Teller Potential
4. Simple Finite Periodic Lattices
4.1. The Gaussian Case
4.2. The Pöschl–Teller Case
5. Anomaly in the Lattice Transmission Induced by Asymmetric Basic Cells
6. Final Remarks and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CBB | Composed building block |
WM | Wronskian method |
TM | Transfer matrix method |
SBB | Symmetrical building block |
ABB | Asymmetrical building block |
Appendix A. General R and T Coefficients
Appendix B. Rectangular, Trapezoidal and Triangular Barriers
Appendix C. Scattering Coefficients for the UPT(x) = U0/cosh2[α x] Potential
Appendix D. Double Rectangular Barrier Cells and Anomalous Behavior
References
- Rosen, J. Symmetry Rules: How Science and Nature Are Founded on Symmetry, 1st ed.; Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Bensoussan, A.; Lions, J.-L.; Papanicolaou, G. Asymptotic Analysis for Periodic Structures, 2nd ed.; American Mathematical Society: Providence, RI, USA, 2011. [Google Scholar]
- Guest, S.D.; Fowler, P.W.; Power, S.C. Rigidity of periodic and symmetric structures in nature and engineering. Philos. Trans. R. Soc. A 2014, 372, 20130358. [Google Scholar] [CrossRef] [PubMed]
- Nefyodov, E.I.; Smolskiy, S.M. Periodic processes and structures in nature, science, and engineering. In Electromagnetic Fields and Waves. Textbooks in Telecommunication Engineering; Springer: Cham, Switzerland, 2019. [Google Scholar]
- Bran, A.M.; Stadler, P.F.; Jost, J.; Restrepo, G. The six stages of the convergence of the periodic system to its final structure. Commun. Chem. 2023, 6, 87. [Google Scholar] [CrossRef] [PubMed]
- Leitherer, A.; Ziletti, A.; Ghiringhelli, L.M. Robust recognition and exploratory analysis of crystal structures via Bayesian deep learning. Nat. Commun. 2021, 12, 6234. [Google Scholar] [CrossRef] [PubMed]
- Barkat, O. Study and Simulation of the Characteristics of Periodic Structures; Our Knowledge Publishing: Delhi, India, 2021. [Google Scholar]
- Johnston, I.G.; Dingle, K.; Greenbury, S.F.; Camargo, C.Q.; Doye, J.P.; Ahnert, S.E.; Louis, A.A. Symmetry and simplicity spontaneously emerge from the algorithmic nature of evolution. Proc. Natl. Acad. Sci. USA 2022, 119, e2113883119. [Google Scholar] [CrossRef] [PubMed]
- Newton, R.G. Scattering Theory of Waves and Particles, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Ishimaru, A. Electromagnetic Wave Propagation, Radiation, and Scattering: From Fundamentals to Applications, 1st ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2017. [Google Scholar]
- Touhei, T. Theory of Elastic Wave Propagation and Its Application to Scattering Problems, 1st ed.; CRC Press: Boca Raton, FL, USA, 2024. [Google Scholar]
- Jia, Z.; Liu, F.; Jiang, X.; Wang, L. Engineering lattice metamaterials for extreme property, programmability, and multifunctionality. J. Appl. Phys. 2020, 127, 150901. [Google Scholar] [CrossRef]
- Schnitzer, O.; Craster, R.V. Bloch waves in an arbitrary two-dimensional lattice of subwavelength Dirichlet scatterers. SIAM J. Appl. Math. 2017, 77, 2119–2135. [Google Scholar] [CrossRef]
- Ojeda-Aciego, M.; Outrata, J. Concept lattices and their applications. Int. J. Gen. Syst. 2015, 45, 55–56. [Google Scholar] [CrossRef]
- da Luz, M.G.; Anteneodo, C. Nonlinear dynamics in meso and nano scales: Fundamental aspects and applications. Philos. Trans. R. Soc. A 2011, 369, 245–259. [Google Scholar] [CrossRef]
- Citrin, D.S. Quasitransparent states in the logarithmic chain and nontrivial zeros of the Riemann zeta function. Phys. Rev. B 2024, 110, L081406. [Google Scholar] [CrossRef]
- Ptitsyna, N.; Shipman, S.P. Guided modes and anomalous scattering by a periodic lattice. In Proceedings of the 2008 12th International Conference on Mathematical Methods in Electromagnetic Theory, Odessa, Ukraine, 29 June–2 July 2008. [Google Scholar]
- Buonocore, S.; Sen, M.; Semperlotti, F. Occurrence of anomalous diffusion and non-local response in highly-scattering acoustic periodic media. New J. Phys. 2019, 21, 033011. [Google Scholar] [CrossRef]
- Cutolo, A.; Palumbo, S.; Carotenuto, A.R.; Sacco, E.; Fraldi, M. A class of periodic lattices for tuning elastic instabilities. Extrem. Mech. Lett. 2022, 55, 101839. [Google Scholar] [CrossRef]
- Krasnok, A.; Baranov, D.; Li, H.; Miri, M.A.; Monticone, F.; Alú, A. Anomalies in light scattering. Adv. Opt. Photonics 2019, 11, 892–951. [Google Scholar] [CrossRef]
- Martin, P.A. Multiple Scattering: Interaction of Time-Harmonic Waves with N Obstacles, 1st ed.; Cambridge University Press: Cambridge, UK, 2006. [Google Scholar]
- Harrington, D.R. Multiple scattering, the Glauber approximation, and the off-shell eikonal approximation. Phys. Rev. 1969, 184, 1745. [Google Scholar] [CrossRef]
- Stamnes, K.; Li, W.; Stamnes, S.; Hu, Y.; Zhou, Y.; Chen, N.; Fan, Y.; Hamre, B.; Lu, X.; Huang, Y.; et al. Laser light propagation in a turbid medium: Solution including multiple scattering effects. Eur. J. Phys. D 2023, 77, 110. [Google Scholar] [CrossRef]
- Glauber, R.J.; Osland, P. Asymptotic Diffraction Theory and Nuclear Scattering, 1st ed.; Cambridge University Press: Cambridge, UK, 2019. [Google Scholar]
- da Luz, M.G.E.; Heller, E.J.; Cheng, B.K. Exact form of Green’s functions for segmented potentials. J. Phys. A 1998, 31, 2975. [Google Scholar] [CrossRef]
- Andrade, F.M.; Schmidt, A.G.M.; Vicentini, E.; Cheng, B.K.; da Luz, M.G.E. Green’s function approach for quantum graphs: An overview. Phys. Rep. 2016, 647, 1–46. [Google Scholar] [CrossRef]
- Oliveira, L.R.N.; da Luz, M.G.E. Quantum scattering in one-dimensional periodic structures: A Green’s function approach solved through continued fractions. Phys. Rev. B 2024, 110, 054303. [Google Scholar] [CrossRef]
- Kalotas, T.M.; Lee, A.R. A new approach to one-dimensional scattering. Am. J. Phys. 1991, 59, 48. [Google Scholar] [CrossRef]
- Abdolkader, T.M.; Shaker, A.; Alahmadi, A.N.M. Numerical simulation of tunneling through arbitrary potential barriers applied on MIM and MIIM rectenna diodes. Eur. J. Phys. 2018, 39, 045402. [Google Scholar] [CrossRef]
- Fernández, F.M. Quantum Gaussian wells and barriers. Am. J. Phys. 2011, 79, 752. [Google Scholar] [CrossRef]
- Fernández, F.M. Wronskian method for one-dimensional quantum scattering. Am. J. Phys. 2011, 79, 877. [Google Scholar] [CrossRef]
- Cevik, D.; Gadella, M.; Kuru, Ş.E.N.G.Ü.L.; Negro, J. Resonances and antibound states for the Pöschl–Teller potential: Ladder operators and SUSY partners. Phys. Lett. A 2016, 380, 1600–1609. [Google Scholar] [CrossRef]
- Shizgal, B.D. Pseudospectral method of solution of the Schrödinger equation with non classical polynomials: The Morse and Pöschl–Teller (SUSY) potentials. Comput. Theor. Chem. 2016, 1084, 51–58. [Google Scholar] [CrossRef]
- Al Sakkaf, L.; Al Khawaja, U. Bound-states spectrum of the nonlinear Schrödinger equation with Pöschl-Teller and square-potential wells. Phys. Rev. E 2022, 106, 024206. [Google Scholar] [CrossRef] [PubMed]
- Eyube, E.S.; Yusuf, I.; Omugbe, E.; Makasson, C.R.; Onate, C.A.; Mohammed, B.D.; Balami, B.Y.; Tahir, A.M. Energy spectrum and magnetic susceptibility of the improved Pöschl-Teller potential. Phys. B Condens. Matter. 2024, 416483. [Google Scholar] [CrossRef]
- Ahmed, F.; Bouzenada, A.; Moreira, A.R. Effects of Pöschl-Teller potential on approximate ℓ ≠ 0-states solution in topological defect geometry and Shannon entropy. Phys. Scr. 2024, 99, 075411. [Google Scholar] [CrossRef]
- da Luz, M.G.E.; Cheng, B.K.; Beims, M.W. Asymptotic Green functions: A generalized semiclassical approach for scattering by multiple barrier potentials. J. Phys. A 2001, 34, 5041. [Google Scholar] [CrossRef]
- Manga Rao, V.S.C.; Prasad, M.D.; Gupta, S.D. Self-similarity in nonclassical transmission through a Fibonacci sequence of Gaussian barriers. J. Mod. Phys. C 2005, 16, 327. [Google Scholar] [CrossRef]
- Sánchez-Soto, L.L.; Monzón, J.J.; Barriuso, A.G.; Cariñena, J.F. The transfer matrix: A geometrical perspective. Phys. Rep. 2012, 513, 191–227. [Google Scholar] [CrossRef]
- Pereyra, P. The transfer matrix method and the theory of finite periodic systems. From heterostructures to superlattices. Phys. Status Solidi B 2022, 259, 2100405. [Google Scholar] [CrossRef]
- Rumpf, R.C. Improved formulation of scattering matrices for semi-analytical methods that is consistent with convention. Prog. Electromagn. Res. B 2011, 35, 241–261. [Google Scholar] [CrossRef]
- Asbóth, J.K.; Oroszlány, L.; Pályi, A. A Short Course on Topological Insulators, 1st ed.; Springer: Cham, Switzerland, 2016. [Google Scholar]
- Majidi, M.A. Electron hopping integral renormalization due to anharmonic phonons. J. Phys. Conf. Ser. 2018, 1011, 012080. [Google Scholar] [CrossRef]
- Sprung, D.W.L.; Wu, H.; Martorell, J. Scattering by a finite periodic potential. Am. J. Phys. 1993, 61, 1118–1123. [Google Scholar] [CrossRef]
- Tung, H.H.; Lee, C.P. A novel energy filter using semiconductor superlattices and its application to tunneling time calculations. IEEE J. Quantum Electron. 1996, 32, 2122. [Google Scholar] [CrossRef]
- Gómez, I.; Domínguez-Adame, F.; Diez, E.; Bellani, V. Electron transport across a Gaussian superlattice. J. Appl. Phys. 1999, 85, 3916. [Google Scholar] [CrossRef]
- Diez, E.; Gómez, I.; Domínguez-Adame, F.; Hey, R.; Bellani, V.; Parravicini, G.B. Gaussian semiconductor superlattices. Phys. E 2000, 7, 832. [Google Scholar] [CrossRef]
- Lara, G.A.; Orellana, P. Resonant tunneling through Gaussian superlattices. Rev. Mex. Fis. 2002, 48, 40. [Google Scholar]
- Silba-Vélez, M.; Pérez-Álvarez, R.; Contreras-Solorio, D.A. Transmission and escape in finite superlattices with Gaussian modulation. Rev. Mex. Fis. 2015, 61, 132. [Google Scholar]
- Cabrera, C.I.; Contreras-Solorio, D.A.; Hernandez, L.; Enciso, A.; Rimada, J.C. Gaussian superlattice in GaAs/GaInNAs solar cells. Rev. Mex. Fis. 2017, 63, 223. [Google Scholar]
- Zhang, Y.P.; Yin, Y.H.; Lü, H.H.; Zhang, H.Y. Electronic band gap and transport in graphene superlattice with a Gaussian profile potential voltage. Chin. Phys. B 2013, 23, 027202. [Google Scholar] [CrossRef]
- Villegas, D.; de León-Pérez, F.; Pérez-Álvarez, R. Gaussian superlattice for phonons. Microelectron. J. 2005, 36, 411. [Google Scholar] [CrossRef]
- Su, W.P.; Schrieffer, J.R.; Heeger, A.J. Solitons in polyacetylene. Phys. Rev. Lett. 1979, 42, 1698. [Google Scholar] [CrossRef]
- Su, W.P.; Schrieffer, J.R.; Heeger, A.J. Erratum: Soliton excitations in polyacetylene. Phys. Rev. B 1983, 28, 1138. [Google Scholar] [CrossRef]
- Batra, N.; Sheet, G. Understanding basic concepts of topological insulators through Su–Schrieffer–Heeger (SSH) model. arXiv 2019, arXiv:1906.08435. [Google Scholar]
- Meier, E.J.; An, F.A.; Gadway, B. Observation of the topological soliton state in the Su–Schrieffer–Heeger model. Nat. Commun. 2016, 7, 13986. [Google Scholar] [CrossRef]
- Jovanović, S.; Krasić, M.S. Asymmetric defects in one-dimensional photonic lattices. Laser Phys. 2021, 31, 023001. [Google Scholar] [CrossRef]
- Liao, W.; Li, N. Energy and momentum diffusion in one-dimensional periodic and asymmetric nonlinear lattices with momentum conservation. Phys. Rev. E 2019, 99, 062125. [Google Scholar] [CrossRef]
- Ravari, M.K.; Esfahani, S.N.; Andani, M.T.; Kadkhodaei, M.; Ghaei, A.; Karaca, H.; Elahinia, M. On the effects of geometry, defects, and material asymmetry on the mechanical response of shape memory alloy cellular lattice structures. Smart Mater. Struct. 2016, 25, 025008. [Google Scholar] [CrossRef]
- Fukuda, M.; Mizubayashi, W.; Kohno, A.; Miyazaki, S.; Hirose, M. Analysis of tunnel current through ultrathin gate oxides. Jpn. J. Appl. Phys. 1998, 37, L1534. [Google Scholar] [CrossRef]
- Städele, M.; Tuttle, B.R.; Hess, K. Tunneling through ultrathin SiO2 gate oxides from microscopic models. J. Appl. Phys. 2001, 89, 348. [Google Scholar] [CrossRef]
- Fukuda, M.; Nakagawa, K.; Miyazaki, S.; Hirose, M. Resonant tunneling through a self-assembled Si quantum dot. Appl. Phys. Lett. 1997, 70, 2291. [Google Scholar] [CrossRef]
- Ramírez, C.; González, F.H.; Galván, C.G. Solving Schrödinger equation with scattering matrices. Bound states of Lennard-Jones potential. J. Phys. Soc. Jpn. 2019, 88, 094002. [Google Scholar] [CrossRef]
- Lambropoulos, K.; Simserides, C. Spectral and transmission properties of periodic 1D tight-binding lattices with a generic unit cell: An analysis within the transfer matrix approach. J. Phys. Commun. 2018, 2, 035013. [Google Scholar] [CrossRef]
- Kumar, V.; Singh, K.S.; Ojha, S. Band structure, reflection properties and abnormal behaviour of one-dimensional plasma photonic crystals. Prog. Electromagn. Res. M 2009, 9, 227–241. [Google Scholar] [CrossRef]
- Hardhienata, H.; Aziz, A.I.; Rahmawati, D.; Alatas, H. Transmission characteristics of a 1D photonic crystal sandwiched by two graphene layers. J. Phys. Conf. Ser. 2018, 1057, 012003. [Google Scholar] [CrossRef]
- De Vita, F.; Dematteis, G.; Mazzilli, R.; Proment, D.; Lvov, Y.V.; Onorato, M. Anomalous conduction in one-dimensional particle lattices: Wave-turbulence approach. Phys. Rev. E 2022, 106, 034110. [Google Scholar] [CrossRef]
CBB | Basic Shape | w | ||
---|---|---|---|---|
I | t | 0 | ||
II | t | 0 | 1 | |
III | t | 0 | ||
1 | ||||
IV | t | 0 | ||
1 |
Gaussian () | Basic Shape | w | ||
---|---|---|---|---|
t | 0 | |||
4 | ||||
t | 0 | |||
2 | ||||
t | 0 | |||
1 | ||||
t | 0 | |||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oliveira, L.R.N.; da Luz, M.G.E. Basic Cells Special Features and Their Influence on Global Transport Properties of Long Periodic Structures. Entropy 2024, 26, 942. https://doi.org/10.3390/e26110942
Oliveira LRN, da Luz MGE. Basic Cells Special Features and Their Influence on Global Transport Properties of Long Periodic Structures. Entropy. 2024; 26(11):942. https://doi.org/10.3390/e26110942
Chicago/Turabian StyleOliveira, Luna R. N., and Marcos G. E. da Luz. 2024. "Basic Cells Special Features and Their Influence on Global Transport Properties of Long Periodic Structures" Entropy 26, no. 11: 942. https://doi.org/10.3390/e26110942
APA StyleOliveira, L. R. N., & da Luz, M. G. E. (2024). Basic Cells Special Features and Their Influence on Global Transport Properties of Long Periodic Structures. Entropy, 26(11), 942. https://doi.org/10.3390/e26110942