Problem of Existence of Joint Distribution on Quantum Logic †
Abstract
:1. Introduction
2. Preliminaries
2.1. Quantum Logic
- (i)
- (in what follows instead of we write );
- (ii)
- if then ;
- (iii)
- ;
- (iv)
- if then (orthomodular law).
- (i)
- orthogonal if and only if (in what follows we write );
- (ii)
- compatible (we write ) if and only if there exist pairwise orthogonal elements with
- (i)
- ;
- (ii)
- if then .
2.2. S-Maps
- (s1)
- ;
- (s2)
- if then ;
- (s3)
- if then for any :
- (N1)
- The map with is a state on L. Such a state is referred to as a state generated by p.
- (N2)
- If then .
- (N3)
- for arbitrary elements .
2.3. n-Variate S-Maps and Their Properties
- (s1’)
- ;
- (s2’)
- if for some , then ;
- (s3’)
- if for some , then
- (a)
- a map satisfying , , is a state on L, it meanswhere π is any permutation;
- (b)
- for any for each ;
- (c)
- if for some , thenfor arbitrary permutation π,
- (d)
- if for some thenfor each .
2.4. Observables and Joint Distributions
3. Bivariate -Map Extension
4. Existence of Trivariate Extensions of Bivariate s-Maps
- (s1’)
- (s2.1’)
- if , then
- (s2.2’)
- if , then and thus
- (s2.3’)
- if , then likewise the previous case and
- (s3’)
- It remains to show additivity of g in each coordinate. Let be such that . It is clear that both and are compatible with . Thus as well.First, let us compute .If , we obtainIf , then is compatible with at least one of . Without loss of generality let . Furthermore, since , we obtainRealizing that we conclude
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Birkhoff, G.; von Neumann, J. The Logic of Quantum Mechanics. Ann. Math. 1936, 37, 823–843. [Google Scholar] [CrossRef]
- Varadarajan, V.S. Geometry of Quantum Theory; Springer: New York, NY, USA, 1968. [Google Scholar]
- Pták, P.; Pulmannová, S. Orthomodular Structures as Quantum Logics; Springer: Dordrecht, The Netherlands, 1991. [Google Scholar]
- Guz, W. On the lattice structure of quantum logics. Ann. l’I. H. P. Phys. Théorique 1978, 28, 1–7. [Google Scholar]
- Dvurečenskij, A.; Pulmannová, S. New Trends in Quantum Structures; Springer: Dordrecht, The Netherlands, 2000. [Google Scholar]
- Pavičić, M.; Megill, N.D. Is quantum, logic a logic? In Handbook of Quantum Logic and Quantum Structures, 1st ed.; Engesser, K., Gabbay, D.M., Lehmann, D., Eds.; Elsevier: Amsterdam, The Netherlands, 2009; pp. 23–47. [Google Scholar]
- Holik, F. On the Connection Between Quantum Probability and Geometry. Quanta 2021, 10, 1–14. [Google Scholar] [CrossRef]
- Hamhalter, J. Quantum Measure Theory; Science & Business Media: New York, NY, USA, 2013. [Google Scholar]
- Plotnitsky, A. Reality Without Realism: Matter, Thought, and Technology in Quantum Physics; Springer: Cham, Switzerland, 2021. [Google Scholar]
- Gudder, S.P. Quantum Probability; Academic Press: San Diego, CA, USA, 1988. [Google Scholar]
- Beltrametti, E.G.; Cassinelli, G. The Logic of Quantum Mechanics (Encyclopedia of Mathematics and Its Applications—Vol 15); Cambridge University Press: New York, NY, USA, 2010; Addison-Wesley: Reading, MA, USA, 1981. [Google Scholar]
- Pitowsky, I. Quantum Probability—Quantum Logic; Lecture Notes in Physics; Springer: Berlin/Heidelberg, Germany, 1989; Volume 321. [Google Scholar]
- Khrennikov, A. EPR-Bohm Experiment and Bell’s Inequality: Quantum Physics Meets Probability Theory. Theor. Math. Physic 2008, 157, 86–99. [Google Scholar] [CrossRef]
- Sergioli, G.; Bosyk, G.M.; Santucci, E.; Giuntini, R. A Quantum-inspired Version of the Classification Problem. Int. J. Theor. Phys. 2017, 56, 3880–3888. [Google Scholar] [CrossRef]
- Garola, C. An Epistemic Interpretation of Quantum Probability via Contextuality. Found. Sci. 2020, 25, 105–120. [Google Scholar] [CrossRef]
- Jammer, M. The Philosophy of Quantum Mechanics; Wiley-Interscience: New York, NY, USA, 1974. [Google Scholar]
- Haven, E.; Khrennikov, A.J. Quantum Social Science; Cambridge University Press: New York, NY, USA, 2013. [Google Scholar]
- Sozzo, S. Conjunction and Negation of Natural Concepts: A Quantum-theoretic Modeling. J. Math. Psychol. 2015, 66, 83–102. [Google Scholar] [CrossRef]
- Svozil, K. Quantum, Probability, Logic: The Work and Influence of Itamar Pitowsky. In Jerusalem Studies in Philosophy and History of Science (JSPS); Hemmo, M., Shenker, O., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 521–544. [Google Scholar]
- Pavičić, M. Bibliography on quantum logics and related structures. Int. J. Theor. Phys. 1992, 31, 373–461. [Google Scholar]
- Greechie, R.J. Orthomodular Lattices Admitting No States. J. Comb. Theory 1971, 10, 119–132. [Google Scholar] [CrossRef]
- Holik, F.; Fortin, S.; Bosyk, G.; Plastino, A. On the Interpretation of Probabilities in Generalized Probabilistic Models. In Quantum Interaction; De Barros, J., Coecke, B., Pothos, E., Eds.; QI 2016. Lecture Notes in Computer Science; Springer: Cham, Switzerland, 2017; Volume 10106. [Google Scholar]
- Frąckiewicz, P. Remarks on quantum duopoly schemes. Quantum Inf. Process. 2016, 15, 121–136. [Google Scholar] [CrossRef]
- Frąckiewicz, P.; Szopa, M.; Makowski, M.; Piotrowski, E. Nash Equilibria of Quantum Games in the Special Two-Parameter Strategy Space. Appl. Sci. 2022, 12, 11530. [Google Scholar] [CrossRef]
- Garola, C. Kolmogorovian versus Non-Kolmogorovian Probabilities in Contextual Theories. Entropy 2021, 23, 121. [Google Scholar] [CrossRef] [PubMed]
- Khrennikov, A. Two Faced Janus of Quantum Nonlocality. Entropy 2020, 22, 303. [Google Scholar] [CrossRef] [PubMed]
- Shukla, A.; Khare, M.; Pandey, P. Kolmogorov–Sinai type logical entropy for generalized simultaneous measurements. Rep. Math. Phys. 2021, 88, 21–40. [Google Scholar] [CrossRef]
- Beltrametti, E.G.; Cassinelli, G.; Lahti, P.J. Unitary measurements of discrete quantities in quantum mechanics. J. Math. Phys. 1990, 31, 91–98. [Google Scholar] [CrossRef]
- Cassinelli, G.; Zanghí, N. Conditional probabilities in quantum mechanics. Nuovo Cim. 1984, B 79, 141–154. [Google Scholar] [CrossRef]
- Basieva, I.; Khrennikov, A. Conditional Probability Framework for Entanglement and its Decoupling from Tensor Product Structure. J. Phys. A Math. Theor. 2022, 55, 395302. [Google Scholar] [CrossRef]
- Beltrametti, E.G.; Maczynski, M.J. On a characterization of classical and nonclassical probabilities. J. Math. Phys. 1991, 32, 1280–1286. [Google Scholar] [CrossRef]
- Beltrametti, E.G.; Maczynski, M.J. On Bell-type inequalities. Found. Phys. 1994, 24, 1153–1159. [Google Scholar] [CrossRef]
- Pulmannová, S.; Dvurečenskij, A. Quantum logics, vector-valued measures and representations. Ann. de l’I. H. P. Phys. Théorique 1990, 5, 83–95. [Google Scholar]
- Pulmannová, S. Joint distributions of observables on quantum logics. Int. J. Theor. Phys. 1978, 17, 665–675. [Google Scholar] [CrossRef]
- Pykacz, J.; Fra̧ckiewicz, P. The Problem of Conjunction and Disjunction in Quantum Logics. Int. J. Theor. Phys. 2017, 56, 3963–3970. [Google Scholar] [CrossRef]
- Kalina, M.; Nánásiová, O. Calculus for Non-Compatible Observables, Construction Through Conditional States. Int. J. Theor. Phys. 2014, 54, 506–518. [Google Scholar]
- Nánásiová, O. Principle Conditioning. Int. J. Theor. Phys. 2004, 43, 1383–1395. [Google Scholar] [CrossRef]
- Nánásiová, O. Map for Simultaneous Measurements for a Quantum Logic. Int. J. Theor. Phys. 2003, 42, 1889–1903. [Google Scholar] [CrossRef]
- Nánásiová, O.; Valášková, Ĺ. Marginality and Triangle Inequality. Int. J. Theor. Phys. 2010, 49, 3199–3208. [Google Scholar] [CrossRef]
- Nánásiová, O.; Khrennikov, A. Compatibility and Marginality. Int. J. Theor. Phys. 2007, 46, 1083–1095. [Google Scholar] [CrossRef]
- Pykacz, J.; Valášková, Ĺ.; Nánásiová, O. Bell-Type Inequalities for Bivariate Maps on Orthomodular Lattices. Found. Sci. 2015, 45, 900–913. [Google Scholar] [CrossRef]
- Nánásiová, O.; Pykacz, J.; Valášková, Ĺ.; Čipková, K. On Extension of Joint Distribution Functions on Quantum Logics. Int. J. Theor. Phys. 2020, 59, 274–291. [Google Scholar] [CrossRef]
- Vlach, M. Conditions for the Existence of Solutions of the Three-dimensional Planar Transportation Problem. Discret. Appl. Math. 1986, 13, 61–78. [Google Scholar] [CrossRef]
- Malvestuto, F.M. Existence of Extensions and Product Extensions for Discrete Probability Distributions. Discret. Math. 1988, 69, 61–77. [Google Scholar] [CrossRef]
- Sklar, A. Fonctions de Répartition à n Dimensions et Leurs Marges. Publ. L’Institut Stat. L’Université De Paris 1959, 8, 229–231. [Google Scholar]
- Sklar, A. Random Variables, Distribution Functions, and Copulas—A Personal Look Backward and Forward (in Distributions with Fixed Marginals and Related Topics). Inst. Math. Stat. 1996, 28, 1–14. [Google Scholar]
- Nánásiová, O.; Valášková, Ĺ. Maps on a Quantum Logic. Soft Comput. 2010, 14, 1047–1052. [Google Scholar] [CrossRef]
- Kalmbach, G. Orthomodular Lattices; Academic Press: London, UK; New York, NY, USA, 1983. [Google Scholar]
- Pavičić, M. Exhaustive Generation of Orthomodular Lattices with Exactly One Nonquantum State. Rep. Math. Phys. 2009, 64, 417–428. [Google Scholar] [CrossRef]
- Gudder, S. Joint Distributions of Observables. J. Math. Mech. 1968, 18, 325–335. [Google Scholar] [CrossRef]
- Dvurečenskij, A.; Pulmannová, S. On joint distribution of observables. Math. Slovaca 1982, 32, 155–166. [Google Scholar]
- Dvurečenskij, A.; Pulmannová, S. Connection Between Joint Distribution and Compatibility. Rep. Math. Phys. 1984, 19, 349–359. [Google Scholar] [CrossRef]
- Czkwianianc, E. Joint distributions and compatibility of observables in quantum logics. Math. Slovaca 1988, 38, 361–366. [Google Scholar]
- Dvurečenskij, A.; Pulmannová, S. On the sum of observables in a logic. Math. Slovaca 1980, 30, 393–399. [Google Scholar]
- Gudder, S.P. Uniqueness and existence properties of bounded observables. Pac. J. Math. 1966, 19, 81–83. [Google Scholar] [CrossRef]
- Gudder, S.P. Stochastic Methods in Quantum Mechanics; Elsevier North Holland, Inc.: New York, NY, USA, 1979. [Google Scholar]
- Urbanik, K. Joint probability distributions of observables in quantum mechanics. Stud. Math. 1961, 21, 117–133. [Google Scholar] [CrossRef]
- Urbanik, K. Joint distributions and commutability of observables. Demonstr. Math. 1985, 1, 31–41. [Google Scholar] [CrossRef]
p | a | b | c | |||
---|---|---|---|---|---|---|
a | 0 | 0 | 0 | |||
b | 0 | 0 | ||||
c | 0 | |||||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nánásiová, O.; Čipková, K.; Zákopčan, M. Problem of Existence of Joint Distribution on Quantum Logic. Entropy 2024, 26, 1121. https://doi.org/10.3390/e26121121
Nánásiová O, Čipková K, Zákopčan M. Problem of Existence of Joint Distribution on Quantum Logic. Entropy. 2024; 26(12):1121. https://doi.org/10.3390/e26121121
Chicago/Turabian StyleNánásiová, Oľga, Karla Čipková, and Michal Zákopčan. 2024. "Problem of Existence of Joint Distribution on Quantum Logic" Entropy 26, no. 12: 1121. https://doi.org/10.3390/e26121121
APA StyleNánásiová, O., Čipková, K., & Zákopčan, M. (2024). Problem of Existence of Joint Distribution on Quantum Logic. Entropy, 26(12), 1121. https://doi.org/10.3390/e26121121