Wireless-Channel Key Distribution Based on Laser Synchronization
Abstract
:1. Introduction
2. Principle and Experimental Setup
3. Experimental Results
3.1. Laser Synchronization Induced by a Common Wireless Signal
3.2. Secure Key Generation Rate
4. Numerical Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Shannon, C.E. Communication theory of secrecy systems. Bell Syst. Tech. J. 1949, 28, 656–715. [Google Scholar] [CrossRef]
- Maurer, U.M. Secret key agreement by public discussion from common information. IEEE Trans. Inf. Theory 1993, 39, 733–742. [Google Scholar] [CrossRef]
- Ahlswede, R.; Csiszar, I. Common randomness in information theory and cryptography. I. Secret sharing. IEEE Trans. Inf. Theory 1993, 39, 1121–1132. [Google Scholar] [CrossRef]
- Bloch, M.; Barros, J.; Rodrigues, M.R.D.; McLaughlin, S.W. Wireless information-theoretic security. IEEE Trans. Inf. Theory 2008, 54, 2515–2534. [Google Scholar] [CrossRef]
- Hassan, A.A.; Stark, W.E.; Hershey, J.E.; Chennakeshu, S. Cryptographic Key Agreement for Mobile Radio. Digit. Signal Process. 1996, 6, 207–212. [Google Scholar] [CrossRef]
- Bennett, C.H. Quantum cryptography: Public key distribution and coin tossing. In Proceedings of the IEEE International Conference on Computers, Bangalore, India, 9–12 December 1984. [Google Scholar]
- Ekert, A.K. Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 1991, 67, 661–663. [Google Scholar] [CrossRef] [PubMed]
- Muramatsu, J.; Yoshimura, K.; Davis, P. Information Theoretic Security Based on Bounded Observability. In Information Theoretic Security; Kurosawa, K., Ed.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 128–139. [Google Scholar]
- Cachin, C.; Maurer, U. Unconditional Security against Memory-Bounded Adversaries; Springer: Berlin/Heidelberg, Germany, 1997; pp. 292–306. [Google Scholar]
- Rabin, M.O. Provably unbreakable hyper-encryption in the limited access model. In Proceedings of the IEEE Information Theory Workshop, Awaji Isl, Japan, 16–19 October 2005; 2005; pp. 34–37. [Google Scholar]
- Aono, T.; Higuchi, K.; Ohira, T.; Komiyama, B.; Sasaoka, H. Wireless secret key generation exploiting reactance-domain scalar response of multipath fading channels. IEEE Trans. Antennas Propag. 2005, 53, 3776–3784. [Google Scholar] [CrossRef]
- Patwari, N.; Croft, J.; Jana, S.; Kasera, S.K. High-Rate Uncorrelated Bit Extraction for Shared Secret Key Generation from Channel Measurements. IEEE Trans. Mob. Comput. 2010, 9, 17–30. [Google Scholar] [CrossRef]
- Ye, C.X.; Mathur, S.; Reznik, A.; Shah, Y.; Trappe, W.; Mandayam, N.B. Information-Theoretically Secret Key Generation for Fading Wireless Channels. IEEE Trans. Inf. Forensics Secur. 2010, 5, 240–254. [Google Scholar]
- Madiseh, M.G.; Neville, S.W.; McGuire, M.L. Applying Beamforming to Address Temporal Correlation in Wireless Channel Characterization-Based Secret Key Generation. IEEE Trans. Inf. Forensics Secur. 2012, 7, 1278–1287. [Google Scholar] [CrossRef]
- Aldaghri, N.; Mahdavifar, H. Physical Layer Secret Key Generation in Static Environments. IEEE Trans. Inf. Forensics Secur. 2020, 15, 2692–2705. [Google Scholar] [CrossRef]
- Lu, X.J.; Lei, J.; Shi, Y.X.; Li, W. Intelligent Reflecting Surface Assisted Secret Key Generation. IEEE Signal Process. Lett. 2021, 28, 1036–1040. [Google Scholar] [CrossRef]
- Uchida, A.; Amano, K.; Inoue, M.; Hirano, K.; Naito, S.; Someya, H.; Oowada, I.; Kurashige, T.; Shiki, M.; Yoshimori, S.; et al. Fast physical random bit generation with chaotic semiconductor lasers. Nat. Photonics 2008, 2, 728–732. [Google Scholar] [CrossRef]
- Sakuraba, R.; Iwakawa, K.; Kanno, K.; Uchida, A. Tb/s physical random bit generation with bandwidth-enhanced chaos in three-cascaded semiconductor lasers. Opt. Express 2015, 23, 1470–1490. [Google Scholar] [CrossRef] [PubMed]
- Kanter, I.; Butkovski, M.; Peleg, Y.; Zigzag, M.; Aviad, Y.; Reidler, I.; Rosenbluh, M.; Kinzel, W. Synchronization of random bit generators based on coupled chaotic lasers and application to cryptography. Opt. Express 2010, 18, 18292–18302. [Google Scholar] [CrossRef] [PubMed]
- Yoshimura, K.; Muramatsu, J.; Davis, P.; Harayama, T.; Okumura, H.; Morikatsu, S.; Aida, H.; Uchida, A. Secure Key Distribution Using Correlated Randomness in Lasers Driven by Common Random Light. Phys. Rev. Lett. 2012, 108, 5. [Google Scholar] [CrossRef] [PubMed]
- Porte, X.; Soriano, M.C.; Brunner, D.; Fischer, I. Bidirectional private key exchange using delay-coupled semiconductor lasers. Opt. Lett. 2016, 41, 2871–2874. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.X.; Cheng, M.F.; Luo, C.K.; Deng, L.; Zhang, M.M.; Fu, S.N.; Tang, M.; Shum, P.; Liu, D.M. Semiconductor-laser-based hybrid chaos source and its application in secure key distribution. Opt. Lett. 2019, 44, 2605–2608. [Google Scholar] [CrossRef]
- Argyris, A.; Pikasis, E.; Syvridis, D. Gb/s One-Time-Pad Data Encryption With Synchronized Chaos-Based True Random Bit Generators. J. Lightwave Technol. 2016, 34, 5325–5331. [Google Scholar] [CrossRef]
- Bohm, F.; Sahakian, S.; Dooms, A.; Verschaffelt, G.; Van der Sande, G. Stable High-Speed Encryption Key Distribution via Synchronization of Chaotic Optoelectronic Oscillators. Phys. Rev. Appl. 2020, 13, 10. [Google Scholar] [CrossRef]
- Muramatsu, J.; Yoshimura, K.; Davis, P.; Uchida, A.; Harayama, T. Secret-Key Distribution Based on Bounded Observability. Proc. IEEE 2015, 103, 1762–1780. [Google Scholar] [CrossRef]
- Gao, H.; Wang, A.B.; Wang, L.S.; Jia, Z.W.; Guo, Y.Y.; Gao, Z.S.; Yan, L.S.; Qin, Y.W.; Wang, Y.C. 0.75 Gbit/s high-speed classical key distribution with mode-shift keying chaos synchronization of Fabry-Perot lasers. Light-Sci. Appl. 2021, 10, 9. [Google Scholar] [CrossRef] [PubMed]
- Muramatsu, J.; Yoshimura, K.; Arai, K.; Davis, P. Secret key capacity for optimally correlated sources under sampling attack. IEEE Trans. Inf. Theory 2006, 52, 5140–5151. [Google Scholar] [CrossRef]
- Toral, R.; Mirasso, C.R.; Hernandez-Garcia, E.; Piro, O. Analytical and numerical studies of noise-induced synchronization of chaotic systems. CHAOS 2001, 11, 665–673. [Google Scholar] [CrossRef] [PubMed]
- Kanno, K.; Uchida, A. Consistency and complexity in coupled semiconductor lasers with time-delayed optical feedback. Phys. Rev. E 2012, 86, 9. [Google Scholar] [CrossRef] [PubMed]
- Jiang, N.; Xue, C.P.; Liu, D.; Lv, Y.X.; Qiu, K. Secure key distribution based on chaos synchronization of VCSELs subject to symmetric random-polarization optical injection. Opt. Lett. 2017, 42, 1055–1058. [Google Scholar] [CrossRef]
- Wang, L.S.; Chao, M.; Wang, A.B.; Gao, H.; Li, S.S.; Guo, Y.Y.; Wang, Y.C.; Yan, L.S. High-speed physical key distribution based on dispersion-shift-keying chaos synchronization in commonly driven semiconductor lasers without external feedback. Opt. Express 2020, 28, 37919–37935. [Google Scholar] [CrossRef]
- Murakami, A.; Kawashima, K.; Atsuki, K. Cavity resonance shift and bandwidth enhancement in semiconductor lasers with strong light injection. IEEE J. Quantum Electron. 2003, 39, 1196–1204. [Google Scholar] [CrossRef]
- Argyris, A.; Grivas, E.; Hamacher, M.; Bogris, A.; Syvridis, D. Chaos-on-a-chip secures data transmission in optical fiber links. Opt. Express 2010, 18, 5188–5198. [Google Scholar] [CrossRef]
- Koizumi, H.; Morikatsu, S.; Aida, H.; Nozawa, T.; Kakesu, I.; Uchida, A.; Yoshimura, K.; Muramatsu, J.; Davis, P. Information-theoretic secure key distribution based on common random-signal induced synchronization in unidirectionally-coupled cascades of semiconductor lasers. Opt. Express 2013, 21, 17869–17893. [Google Scholar] [CrossRef]
- Rappaport, T.S. Wireless Communications: Principles and Practice, 2nd ed.; Prentice Hall: Hoboken, NJ, USA, 2001; Volume 2. [Google Scholar]
- Promwong, S.; Panthap, P. Experimental evaluation of complex form Friis’ transmission formula with indoor/outdoor for ultra wideband inpulse radio. In Proceedings of the International Conference on Computer and Communication Engineering, Kuala Lumpur, Malaysia, 13–15 May 2008; 2008; pp. 1037–1041. [Google Scholar]
- Lowery, A.J. New dynamic semiconductor laser model based on the transmission-line modelling method. IEE Proc. J. (Optoelectron.) 1987, 134, 281–289. [Google Scholar] [CrossRef]
- Duzgol, O.; Kyritsis, G.; Zakhleniuk, N. Travelling-wave modelling of the modulation dynamic performance of wavelength-tunable laser diodes using the integrated VPI and PICS3D software. IET Optoelectron. 2017, 11, 66–72. [Google Scholar] [CrossRef]
- Ohtsubo, J. Semiconductor Lasers: Stability, Instability and Chaos, 4th ed.; Springer: Cham, Switzerland, 2017; pp. 51–55. [Google Scholar]
Measure | Symbol | Value |
---|---|---|
Cross-correlation | CC | 0.950 |
Retained ratio by dual-threshold quantization | Rdt | 0.623 |
Mutual information between Alice and Eve | I(YA,YE) | 0.489 |
BER between Alice and Bob | Rfail | 3.12 × 10−3 |
Secret bit rate | Rb | 0.240 |
Key generation rate | r | 150 Mbit/s |
Parameter | Symbol | Value |
---|---|---|
Active region length | L | 350 µm |
Active region width | w | 2.5 µm |
Active region thickness | d | 0.2 µm |
Group refractive index | ng | 3.7 |
Internal loss | α0 | 3000 m−1 |
Confinement factor | Γ | 0.3 |
Index grating coupling coefficient | ki | 6000 m−1 |
Linear recombination coefficient | A | 3 × 108 s−1 |
Bimolecular recombination coefficient | B | 1 × 10−16 m3s−1 |
Auger recombination coefficient | C | 1.3 × 10−41 m6s−1 |
Transparency carrier density | N0 | 1.5 × 1024 m−3 |
Linear gain coefficient | gL | 3 × 10−20 m2 |
Nonlinear gain saturation coefficient | εNL | 1 × 10−23 m3 |
Linewidth enhancement factor | αH | 3 |
Inversion parameter | nsp | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, J.; Wang, A.; Zhang, X.; Mo, L.; Zhang, Y.; Sun, Y.; Qin, Y.; Wang, Y. Wireless-Channel Key Distribution Based on Laser Synchronization. Entropy 2024, 26, 181. https://doi.org/10.3390/e26030181
Xu J, Wang A, Zhang X, Mo L, Zhang Y, Sun Y, Qin Y, Wang Y. Wireless-Channel Key Distribution Based on Laser Synchronization. Entropy. 2024; 26(3):181. https://doi.org/10.3390/e26030181
Chicago/Turabian StyleXu, Junpei, Anbang Wang, Xinhui Zhang, Laihong Mo, Yuhe Zhang, Yuehui Sun, Yuwen Qin, and Yuncai Wang. 2024. "Wireless-Channel Key Distribution Based on Laser Synchronization" Entropy 26, no. 3: 181. https://doi.org/10.3390/e26030181
APA StyleXu, J., Wang, A., Zhang, X., Mo, L., Zhang, Y., Sun, Y., Qin, Y., & Wang, Y. (2024). Wireless-Channel Key Distribution Based on Laser Synchronization. Entropy, 26(3), 181. https://doi.org/10.3390/e26030181