Intrinsic Information-Theoretic Models
Abstract
:1. Introduction
2. Mathematical Framework
2.1. A Single Source with a Single Sample: The Fisher’s Information, the Riemannian Manifold, and the Quadratic Mahalanobis Distance
2.2. A Single Source with n Samples: The Fisher’s Information, the Riemannian Manifold, and the Square of the Riemannian Distance
2.3. Stationary States of a Single Source of n Samples in the Riemannian Manifold
2.4. Solutions of a Single Quantum Harmonic Oscillator in the Riemannian Manifold
2.5. Probability Density Function of a Single Source of n Samples, Mean Quadratic Mahalanobis Distance, and Intrinsic Cramér–Rao Lower Bound
2.6. m Independent Sources of n Samples and Global Probability Density Function
2.7. m Dependent Sources of a Single Sample, the Fisher’s Information, the Riemannian Manifold, and the Quadratic Mahalanobis Distance
2.8. m Dependent Sources of n Samples, the Fisher’s Information, the Riemannian Manifold, and the Square of the Riemannian Distance
2.9. Stationary States of m-Dependent Sources of n Samples in the Riemannian Manifold
2.10. Solutions of m-Coupled Quantum Harmonic Oscillators in the Riemannian Manifold
2.11. Bayesian Framework and Posterior Probability Density Function
3. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Bernal-Casas, D.; Oller, J.M. Information-Theoretic Models for Physical Observables. Entropy 2023, 25, 1448. [Google Scholar] [CrossRef] [PubMed]
- Fisher, R. On the mathematical foundations of theoretical statistics. Philos. Trans. R. Soc. Lond. Ser. Contain. Pap. Math. Phys. Character 1922, 222, 309–368. [Google Scholar]
- Riemann, B. Über die Hypothesen, Welche der Geometrie zu Grunde Liegen. (Mitgetheilt durch R. Dedekind). 1868. Available online: https://eudml.org/doc/135760 (accessed on 15 July 2023).
- Mahalanobis, P. On the generalized distance in Statistics. Proc. Nat. Inst. Sci. India 1936, 2, 49–55. [Google Scholar]
- Frieden, B. Science from Fisher Information: A Unification, 2nd ed.; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
- Schrödinger, E. An Undulatory Theory of the Mechanics of Atoms and Molecules. Phys. Rev. 1926, 28, 1049–1070. [Google Scholar] [CrossRef]
- Schrödinger, E. Quantisierung als Eigenwertproblem. II. Ann. Phys. 1926, 79, 489–527. [Google Scholar] [CrossRef]
- Laplace, P. Mémoire sur les Intégrales Définies et leur Application aux Probabilités, et Spécialement a la Recherche du Milieu Qu’il Faut Choisir Entre les Resultats des Observations. In Mémoires de la Classe des Sciences Mathématiques et Physiques de L’institut Impérial de France; Institut de France: Paris, France, 1811; pp. 297–347. [Google Scholar]
- Hermite, C. Sur un Nouveau Développement en Série de Fonctions; Académie des Sciences and Centre National de la Recherche Scientifique de France: Paris, France, 1864. [Google Scholar]
- Oller, J.M.; Corcuera, J.M. Intrinsic Analysis of Statistical Estimation. Ann. Stat. 1995, 23, 1562–1581. [Google Scholar] [CrossRef]
- Muirhead, R. Aspects of Multivariate Statistical Theory; Wiley: Hoboken, NJ, USA, 1982. [Google Scholar] [CrossRef]
- Chavel, I. Eigenvalues in Riemannian Geometry; Elsevier: Philadelphia, PA, USA, 1984. [Google Scholar] [CrossRef]
- Bayes, T. An essay towards solving a problem in the doctrine of chances. Phil. Trans. R. Soc. Lond. 1763, 53, 370–418. [Google Scholar] [CrossRef]
- Jeffreys, H. An invariant form for the prior probability in estimation problems. Proc. R. Soc. Lond. Ser. Math. Phys. Sci. 1946, 186, 453–461. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bernal-Casas, D.; Oller, J.M. Intrinsic Information-Theoretic Models. Entropy 2024, 26, 370. https://doi.org/10.3390/e26050370
Bernal-Casas D, Oller JM. Intrinsic Information-Theoretic Models. Entropy. 2024; 26(5):370. https://doi.org/10.3390/e26050370
Chicago/Turabian StyleBernal-Casas, D., and J. M. Oller. 2024. "Intrinsic Information-Theoretic Models" Entropy 26, no. 5: 370. https://doi.org/10.3390/e26050370
APA StyleBernal-Casas, D., & Oller, J. M. (2024). Intrinsic Information-Theoretic Models. Entropy, 26(5), 370. https://doi.org/10.3390/e26050370