Analytic Formulae for T Violation in Neutrino Oscillations
Abstract
:1. Introduction
2. Analytical Formula for Oscillation Probabilities
3. Analytic Form of T Violation
3.1. The Three-Flavor Case with Unitarity
3.1.1. The Standard Three-Flavor Case
3.1.2. The Case with Nonstandard Interactions
3.2. The Three-Flavor Case with Unitarity Violation
4. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Particle Data Group; Workman, R.L.; Burkert, V.D.; Crede, V.; Klempt, E.; Thoma, U.; Tiator, L.; Agashe, K.; Aielli, G.; Allanach, B.C.; et al. Review of Particle Physics. Prog. Theor. Exp. Phys. 2022, 2022, 083C01. [Google Scholar]
- Hamada, Y.; Kitano, R.; Matsudo, R.; Takaura, H.; Yoshida, M. μTRISTAN. Prog. Theor. Exp. Phys. 2022, 2022, 053B02. [Google Scholar] [CrossRef]
- Sugama, S. T-violation of neutrino oscillation at μTRISTAN. In Hokkaido Workshop on Particle Physics at Crossroads; Hokkaido University: Sapporo, Japan, 7–10 March 2024; Available online: https://conference-indico.kek.jp/event/248/ (accessed on 24 April 2024).
- Geer, S. Neutrino beams from muon storage rings: Characteristics and physics potential. Phys. Rev. D 1998, 57, 6989–6997, Erratum in Phys. Rev. D 1999, 59, 039903. [Google Scholar] [CrossRef]
- Bandyopadhyay, A.; Choubey, S.; Gandhi, R.; Goswami, S.; Roberts, B.L.; Bouchez, J.; Antoniadis, I.; Ellis, J.; Giudice, G.F.; Schwetz, T.; et al. Physics at a future Neutrino Factory and super-beam facility. Rept. Prog. Phys. 2009, 72, 106201. [Google Scholar] [CrossRef]
- Ota, T.; Sato, J.; Kuno, Y. Search for T violation in neutrino oscillation with the use of muon polarization at a neutrino factory. Phys. Lett. B 2001, 520, 289–297. [Google Scholar] [CrossRef]
- Cabibbo, N. Time Reversal Violation in Neutrino Oscillation. Phys. Lett. B 1978, 72, 333–335. [Google Scholar] [CrossRef]
- Krastev, P.I.; Petcov, S.T. Resonance Amplification and t Violation Effects in Three Neutrino Oscillations in the Earth. Phys. Lett. B 1988, 205, 84–92. [Google Scholar] [CrossRef]
- Toshev, S. On T violation in matter neutrino oscillations. Mod. Phys. Lett. A 1991, 6, 455–460. [Google Scholar] [CrossRef]
- Naumov, V.A. Three neutrino oscillations in matter, CP violation and topological phases. Int. J. Mod. Phys. D 1992, 1, 379–399. [Google Scholar] [CrossRef]
- Arafune, J.; Sato, J. CP and T violation test in neutrino oscillation. Phys. Rev. D 1997, 55, 1653–1658. [Google Scholar] [CrossRef]
- Barger, V.D.; Dai, Y.B.; Whisnant, K.; Young, B.L. Neutrino mixing, CP/T violation and textures in four neutrino models. Phys. Rev. D 1999, 59, 113010. [Google Scholar] [CrossRef]
- Koike, M.; Sato, J. CP and T violation in long baseline experiments with low-energy neutrino from muon storage ring. Phys. Rev. D 2000, 61, 073012, Erratum in Phys. Rev. D 2000, 62, 079903. [Google Scholar] [CrossRef]
- Koike, M.; Sato, J. T violation search with very long baseline neutrino oscillation experiments. Phys. Rev. D 2000, 62, 073006. [Google Scholar] [CrossRef]
- Harrison, P.F.; Scott, W.G. CP and T violation in neutrino oscillations and invariance of Jarlskog’s determinant to matter effects. Phys. Lett. B 2000, 476, 349–355. [Google Scholar] [CrossRef]
- Yokomakura, H.; Kimura, K.; Takamura, A. Matter enhancement of T violation in neutrino oscillation. Phys. Lett. B 2000, 496, 175–184. [Google Scholar] [CrossRef]
- Parke, S.J.; Weiler, T.J. Optimizing T violating effects for neutrino oscillations in matter. Phys. Lett. B 2001, 501, 106–114. [Google Scholar] [CrossRef]
- Koike, M.; Ota, T.; Sato, J. Ambiguities of theoretical parameters and CP/T violation in neutrino factories. Phys. Rev. D 2002, 65, 053015. [Google Scholar] [CrossRef]
- Miura, T.; Takasugi, E.; Kuno, Y.; Yoshimura, M. The Matter effect to T violation at a neutrino factory. Phys. Rev. D 2001, 64, 013002. [Google Scholar] [CrossRef]
- Akhmedov, E.K.; Huber, P.; Lindner, M.; Ohlsson, T. T violation in neutrino oscillations in matter. Nucl. Phys. B 2001, 608, 394–422. [Google Scholar] [CrossRef]
- Miura, T.; Shindou, T.; Takasugi, E.; Yoshimura, M. The Matter fluctuation effect to T violation at a neutrino factory. Phys. Rev. D 2001, 64, 073017. [Google Scholar] [CrossRef]
- Guo, W.L.; Xing, Z.Z. Rephasing invariants of CP and T violation in the four neutrino mixing models. Phys. Rev. D 2002, 65, 073020. [Google Scholar] [CrossRef]
- Bueno, A.; Campanelli, M.; Navas, S.; Rubbia, A. On the energy and baseline optimization to study effects related to the delta phase (CP/T violation) in neutrino oscillations at a neutrino factory. Nucl. Phys. B 2002, 631, 239–284. [Google Scholar] [CrossRef]
- Minakata, H.; Nunokawa, H.; Parke, S.J. Parameter Degeneracies in Neutrino Oscillation Measurement of Leptonic CP and T Violation. Phys. Rev. D 2002, 66, 093012. [Google Scholar] [CrossRef]
- Xing, Z.Z. Leptonic commutators and clean T violation in neutrino oscillations. Phys. Rev. D 2013, 88, 017301. [Google Scholar] [CrossRef]
- Petcov, S.T.; Zhou, Y.L. On Neutrino Mixing in Matter and CP and T Violation Effects in Neutrino Oscillations. Phys. Lett. B 2018, 785, 95–104. [Google Scholar] [CrossRef]
- Schwetz, T.; Segarra, A. Model-Independent Test of T Violation in Neutrino Oscillations. Phys. Rev. Lett. 2022, 128, 091801. [Google Scholar] [CrossRef] [PubMed]
- Schwetz, T.; Segarra, A. T violation in nonstandard neutrino oscillation scenarios. Phys. Rev. D 2022, 105, 055001. [Google Scholar] [CrossRef]
- de Gouvêa, A.; Kelly, K.J. Neutrino vs. Antineutrino Oscillation Parameters at DUNE and Hyper-Kamiokande. Phys. Rev. D 2017, 96, 095018. [Google Scholar] [CrossRef]
- Barenboim, G.; Ternes, C.A.; Tórtola, M. Neutrinos, DUNE and the world best bound on CPT invariance. Phys. Lett. B 2018, 780, 631–637. [Google Scholar] [CrossRef]
- Tórtola, M.A.; Barenboim, G.; Ternes, C.A. CPT and CP, an entangled couple. JHEP 2020, 07, 155. [Google Scholar]
- Ngoc, T.V.; Cao, S.; Van, N.T.H.; Quyen, P.T. Stringent constraint on CPT violation with the synergy of T2K-II, NOνA extension, and JUNO. Phys. Rev. D 2023, 107, 016013. [Google Scholar] [CrossRef]
- Barenboim, G.; Martínez-Miravé, P.; Ternes, C.A.; Tórtola, M. Neutrino CPT violation in the solar sector. Phys. Rev. D 2023, 108, 035039. [Google Scholar] [CrossRef]
- Kimura, K.; Takamura, A.; Yokomakura, H. Exact formula of probability and CP violation for neutrino oscillations in matter. Phys. Lett. B 2002, 537, 86. [Google Scholar] [CrossRef]
- Kimura, K.; Takamura, A.; Yokomakura, H. All you ever want to know about neutrino oscillation probabilities in constant matter. Phys. Rev. D 2002, 66, 073005. [Google Scholar] [CrossRef]
- Grimus, W.; Scharnagl, T. Neutrino propagation in matter and electromagnetic fields. Mod. Phys. Lett. A 1993, 8, 1943. [Google Scholar] [CrossRef]
- Halprin, A. Neutrino Oscillations in Nonuniform Matter. Phys. Rev. D 1986, 34, 3462. [Google Scholar] [CrossRef]
- Mannheim, P.D. Derivation of the Formalism for Neutrino Matter Oscillations from the Neutrino Relativistic Field Equations. Phys. Rev. D 1988, 37, 1935. [Google Scholar] [CrossRef]
- Sawyer, R.F. Neutrino Oscillations in Inhomogeneous Matter. Phys. Rev. D 1990, 42, 3908. [Google Scholar] [CrossRef]
- Barger, V.D.; Whisnant, K.; Pakvasa, S.; Phillips, R.J.N. Matter effects on three-neutrino oscillations. Phys. Rev. D 1980, 22, 2718. [Google Scholar] [CrossRef]
- Jarlskog, C. Commutator of the Quark Mass Matrices in the Standard Electroweak Model and a Measure of Maximal CP Nonconservation. Phys. Rev. Lett. 1985, 55, 1039. [Google Scholar] [CrossRef]
- Guzzo, M.M.; Masiero, A.; Petcov, S.T. On the MSW effect with massless neutrinos and no mixing in the vacuum. Phys. Lett. B 1991, 260, 154. [Google Scholar] [CrossRef]
- Roulet, E. Mikheyev-Smirnov-Wolfenstein effect with flavor-changing neutrino interactions. Phys. Rev. D 1991, 44, R935. [Google Scholar] [CrossRef] [PubMed]
- Davidson, S.; Pena-Garay, C.; Rius, N.; Santamaria, A. Present and future bounds on non-standard neutrino interactions. J. High Energy Phys. 2003, 0303, 11. [Google Scholar] [CrossRef]
- Biggio, C.; Blennow, M.; Fernandez-Martinez, E. General bounds on non-standard neutrino interactions. J. High Energy Phys. 2009, 8, 90. [Google Scholar] [CrossRef]
- Coloma, P.; Gonzalez-Garcia, M.C.; Maltoni, M.; Pinheiro, J.P.; Urrea, S. Global constraints on non-standard neutrino interactions with quarks and electrons. J. High Energy Phys. 2023, 8, 32. [Google Scholar] [CrossRef]
- Antusch, S.; Biggio, C.; Fernandez-Martinez, E.; Gavela, M.B.; Lopez-Pavon, J. Unitarity of the Leptonic Mixing Matrix. J. High Energy Phys. 2006, 10, 84. [Google Scholar] [CrossRef]
- Fernandez-Martinez, E.; Gavela, M.B.; Lopez-Pavon, J.; Yasuda, O. CP-violation from non-unitary leptonic mixing. Phys. Lett. B 2007, 649, 427–435. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yasuda, O. Analytic Formulae for T Violation in Neutrino Oscillations. Entropy 2024, 26, 472. https://doi.org/10.3390/e26060472
Yasuda O. Analytic Formulae for T Violation in Neutrino Oscillations. Entropy. 2024; 26(6):472. https://doi.org/10.3390/e26060472
Chicago/Turabian StyleYasuda, Osamu. 2024. "Analytic Formulae for T Violation in Neutrino Oscillations" Entropy 26, no. 6: 472. https://doi.org/10.3390/e26060472
APA StyleYasuda, O. (2024). Analytic Formulae for T Violation in Neutrino Oscillations. Entropy, 26(6), 472. https://doi.org/10.3390/e26060472