Flipped Quartification: Product Group Unification with Leptoquarks
Abstract
:1. Introduction
2. Flipped 2 + 1 Quartification Model
3. Phenomenological Implications
4. Summary
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lawrence, A.E.; Nekrasov, N.; Vafa, C. On conformal field theories in four-dimensions. Nucl. Phys. B 1998, 533, 199–209. [Google Scholar] [CrossRef]
- de Rujula, A.; Glashow, S.L.; Georgi, H. Trinification Of All Elementary Particle Forces. In Proceedings of the Fifth Workshop on Grand Unification, Providence, RI, USA, 2–14 April 1984; Kang, K., Fried, H., Frampton, P., Eds.; World Scientific: Singapore, 1984; p. 88. [Google Scholar]
- Babu, K.; He, X.G.; Pakvasa, S. Neutrino Masses and Proton Decay Modes in SU(3) × SU(3) × SU(3) Trinification. Phys. Rev. D 1986, 33, 763. [Google Scholar] [CrossRef] [PubMed]
- He, X.G.; Pakvasa, S. Baryon Asymmetry in SU(3)**3 X Z(3) Trinification Model. Phys. Lett. B 1986, 173, 159–162. [Google Scholar] [CrossRef]
- Nishimura, H.; Okunishi, A. Strong CP problem and nucleon stability in SU(3) × SU(3) × SU(3) trinification model. Phys. Lett. B 1988, 209, 307–310. [Google Scholar] [CrossRef]
- Carlson, E.D.; Wang, M.Y. Trinification and the strong P problem. AIP Conf. Proc. 1992, 272, 1432–1435. [Google Scholar] [CrossRef]
- Lazarides, G.; Panagiotakopoulos, C. MSSM from SUSY trinification. Phys. Lett. B 1994, 336, 190–193. [Google Scholar] [CrossRef]
- Lazarides, G.; Panagiotakopoulos, C. MSSM and large tan beta from SUSY trinification. Phys. Rev. D 1995, 51, 2486–2488. [Google Scholar] [CrossRef]
- Willenbrock, S. Triplicated trinification. Phys. Lett. B 2003, 561, 130–134. [Google Scholar] [CrossRef]
- Choi, K.S.; Kim, J.E. Three family Z(3) orbifold trinification, MSSM and doublet triplet splitting problem. Phys. Lett. B 2003, 567, 87–92. [Google Scholar] [CrossRef]
- Kim, J.E. Trinification with sin**2 theta(W) = 3/8 and seesaw neutrino mass. Phys. Lett. B 2004, 591, 119–126. [Google Scholar] [CrossRef]
- Carone, C.D.; Conroy, J.M. Higgsless GUT breaking and trinification. Phys. Rev. D 2004, 70, 075013. [Google Scholar] [CrossRef]
- Carone, C.D. Tri-N-ification. Phys. Rev. D 2005, 71, 075013. [Google Scholar] [CrossRef]
- Demaria, A.; Volkas, R.R. Kink-induced symmetry breaking patterns in brane-world SU(3)**3 trinification models. Phys. Rev. D 2005, 71, 105011. [Google Scholar] [CrossRef]
- Carone, C.D.; Conroy, J.M. Five-dimensional trinification improved. Phys. Lett. B 2005, 626, 195–201. [Google Scholar] [CrossRef]
- Stech, B. Trinification Phenomenology and the structure of Higgs Bosons. J. High Energy Phys. 2014, 2014, 139. [Google Scholar] [CrossRef]
- Hetzel, J.; Stech, B. Low-energy phenomenology of trinification: An effective left-right-symmetric model. Phys. Rev. D 2015, 91, 055026. [Google Scholar] [CrossRef]
- Pelaggi, G.M.; Strumia, A.; Vignali, S. Totally asymptotically free trinification. J. High Energy Phys. 2015, 2015, 130. [Google Scholar] [CrossRef]
- Camargo-Molina, J.E.; Morais, A.P.; Pasechnik, R.; Wessén, J. On a radiative origin of the Standard Model from Trinification. J. High Energy Phys. 2016, 2016, 129. [Google Scholar] [CrossRef]
- Camargo-Molina, J.E.; Morais, A.P.; Ordell, A.; Pasechnik, R.; Sampaio, M.O.P.; Wessén, J. Reviving trinification models through an E6 -extended supersymmetric GUT. Phys. Rev. D 2017, 95, 075031. [Google Scholar] [CrossRef]
- Dong, P.V.; Huong, D.T.; Queiroz, F.S.; Valle, J.W.F.; Vaquera-Araujo, C.A. The Dark Side of Flipped Trinification. J. High Energy Phys. 2018, 2018, 143. [Google Scholar] [CrossRef]
- Camargo-Molina, J.E.; Morais, A.P.; Ordell, A.; Pasechnik, R.; Wessén, J. Scale hierarchies, symmetry breaking and particle spectra in SU(3)-family extended SUSY trinification. Phys. Rev. D 2019, 99, 035041. [Google Scholar] [CrossRef]
- Ohmer, S. Spontaneous CP Violation and the Strong CP Problem in Left-Right Symmetric Theories. Phys. Rev. D 2019, 99, 115031. [Google Scholar] [CrossRef]
- Wang, Z.W.; Al Balushi, A.; Mann, R.; Jiang, H.M. Safe Trinification. Phys. Rev. D 2019, 99, 115017. [Google Scholar] [CrossRef]
- Dinh, D.N.; Huong, D.T.; Duy, N.T.; Nhuan, N.T.; Thien, L.D.; Van Dong, P. Flavor changing in the flipped trinification. Phys. Rev. D 2019, 99, 055005. [Google Scholar] [CrossRef]
- Dash, C.; Mishra, S.; Patra, S. Theorem on vanishing contributions to sin2θW and intermediate mass scale in Grand Unified Theories with trinification symmetry. Phys. Rev. D 2020, 101, 055039. [Google Scholar] [CrossRef]
- Morais, A.P.; Pasechnik, R.; Porod, W. Prospects for new physics from gauge left-right-colour-family grand unification hypothesis. Eur. Phys. J. C 2020, 80, 1162. [Google Scholar] [CrossRef]
- Cárcamo Hernández, A.E.; Huong, D.T.; Kovalenko, S.; Morais, A.P.; Pasechnik, R.; Schmidt, I. How low-scale trinification sheds light in the flavor hierarchies, neutrino puzzle, dark matter, and leptogenesis. Phys. Rev. D 2020, 102, 095003. [Google Scholar] [CrossRef]
- Dash, C.; Mishra, S.; Patra, S.; Sahu, P. Threshold effects on prediction for proton decay in non-supersymmetric E6 GUT with intermediate trinification symmetry. Nucl. Phys. B 2021, 962, 115239. [Google Scholar] [CrossRef]
- Manolakos, G.; Patellis, G.; Zoupanos, G. N=1 trinification from dimensional reduction of N=1, 10DE8 over SU(3)/U(1)×U(1)×Z3 and its phenomenological consequences. Phys. Lett. B 2021, 813, 136031. [Google Scholar] [CrossRef]
- Joshi, G.C.; Volkas, R. Extended weak isospin and fermion masses in a unified model. Phys. Rev. D 1992, 45, 1711–1719. [Google Scholar] [CrossRef]
- Babu, K.; Ma, E.; Willenbrock, S. Quark lepton quartification. Phys. Rev. D 2004, 69, 051301. [Google Scholar] [CrossRef]
- Chen, S.L.; Ma, E. Exotic fermions and bosons in the quartification model. Mod. Phys. Lett. A 2004, 19, 1267–1272. [Google Scholar] [CrossRef]
- Demaria, A.; Low, C.I.; Volkas, R.R. Neutrino masses in quartification schemes. Phys. Rev. D 2006, 74, 033005. [Google Scholar] [CrossRef]
- Demaria, A.; McDonald, K.L. Quartification On An Orbifold. Phys. Rev. D 2007, 75, 056006. [Google Scholar] [CrossRef]
- Babu, K.; Kephart, T.W.; Päs, H. Leptonic color models from Z(8) orbifolded AdS/CFT. Phys. Rev. D 2008, 77, 116006. [Google Scholar] [CrossRef]
- Eby, D.A.; Frampton, P.H.; He, X.G.; Kephart, T.W. Quartification with T’ Flavor. Phys. Rev. D 2011, 84, 037302. [Google Scholar] [CrossRef]
- Kownacki, C.; Ma, E.; Pollard, N.; Popov, O.; Zakeri, M. Quartified leptonic color, bound states, and future electron–positron collider. Phys. Lett. B 2017, 769, 267–271. [Google Scholar] [CrossRef]
- Hirsch, M.; Klapdor-Kleingrothaus, H.V.; Kovalenko, S.G. New low-energy leptoquark interactions. Phys. Lett. B 1996, 378, 17–22. [Google Scholar] [CrossRef]
- Aristizabal Sierra, D.; Hirsch, M.; Kovalenko, S.G. Leptoquarks: Neutrino masses and accelerator phenomenology. Phys. Rev. D 2008, 77, 055011. [Google Scholar] [CrossRef]
- Cai, Y.; Herrero-García, J.; Schmidt, M.A.; Vicente, A.; Volkas, R.R. From the trees to the forest: A review of radiative neutrino mass models. Front. Phys. 2017, 5, 63. [Google Scholar] [CrossRef]
- Hiller, G.; Schmaltz, M. RK and future b→sℓℓ physics beyond the standard model opportunities. Phys. Rev. D 2014, 90, 054014. [Google Scholar] [CrossRef]
- Sahoo, S.; Mohanta, R. Scalar leptoquarks and the rare B meson decays. Phys. Rev. D 2015, 91, 094019. [Google Scholar] [CrossRef]
- de Medeiros Varzielas, I.; Hiller, G. Clues for flavor from rare lepton and quark decays. J. High Energy Phys. 2015, 2015, 72. [Google Scholar] [CrossRef]
- Päs, H.; Schumacher, E. Common origin of RK and neutrino masses. Phys. Rev. D 2015, 92, 114025. [Google Scholar] [CrossRef]
- Cai, Y.; Gargalionis, J.; Schmidt, M.A.; Volkas, R.R. Reconsidering the One Leptoquark solution: Flavor anomalies and neutrino mass. J. High Energy Phys. 2017, 2017, 47. [Google Scholar] [CrossRef]
- Bigaran, I.; Gargalionis, J.; Volkas, R.R. A near-minimal leptoquark model for reconciling flavour anomalies and generating radiative neutrino masses. J. High Energy Phys. 2019, 2019, 106. [Google Scholar] [CrossRef]
- Foot, R.; Lew, H. Quark-lepton symmetric model. Phys. Rev. D 1990, 41, 3502. [Google Scholar] [CrossRef] [PubMed]
- Foot, R.; Lew, H.; Volkas, R. Phenomenology of quark-lepton symmetric models. Phys. Rev. D 1991, 44, 1531–1546. [Google Scholar] [CrossRef] [PubMed]
- Foot, R.; Volkas, R. Generalised leptonic colour. Phys. Lett. B 2007, 645, 345–350. [Google Scholar] [CrossRef]
- Frampton, P.H.; Kephart, T.W. Quiver Gauge Theory and Conformality at the Large Hadron Collider. Phys. Rept. 2008, 454, 203–269. [Google Scholar] [CrossRef]
- ’t Hooft, G. Naturalness, chiral symmetry, and spontaneous chiral symmetry breaking. NATO Sci. Ser. B 1980, 59, 135–157. [Google Scholar] [CrossRef] [PubMed]
- Kephart, T.W.; Päs, H. Three family N = 1 SUSY models from Z(n) orbifolded AdS/CFT. Phys. Lett. B 2001, 522, 315–319. [Google Scholar] [CrossRef]
- Kephart, T.W.; Päs, H. Classification of SUSY and nonSUSY chiral models from Abelian orbifolds AdS/CFT. Phys. Rev. D 2004, 70, 086009. [Google Scholar] [CrossRef]
- Coriano, C.; Frampton, P.H.; Kephart, T.W.; Melle, D.; Yuan, T.C. An SU(15) Approach to Bifermion Classification. arXiv 2023, arXiv:2301.02425. [Google Scholar] [CrossRef]
- LHCb Collaboration. Test of lepton universality in beauty-quark decays. Nat. Phys. 2022, 18, 277–282. [Google Scholar] [CrossRef]
- Test of lepton universality in b→sℓ+ℓ− decays. arXiv 2022, arXiv:2212.09152. [CrossRef]
- Measurement of lepton universality parameters in B+→K+ℓ+ℓ− and B0→K*0ℓ+ℓ− decays. arXiv 2022, arXiv:2212.09153. [CrossRef]
- Doršner, I.; Fajfer, S.; Greljo, A.; Kamenik, J.F.; Košnik, N. Physics of leptoquarks in precision experiments and at particle colliders. Phys. Rept. 2016, 641, 1–68. [Google Scholar] [CrossRef]
- ATLAS Collaboration. Search for pair-produced scalar and vector leptoquarks decaying into third-generation quarks and first- or second-generation leptons in pp collisions with the ATLAS detector. J. High Energy Phys. 2023, 2306, 188. [Google Scholar] [CrossRef]
- ATLAS Collaboration. Search for leptoquarks decaying into the bτ final state in pp collisions at s = 13 TeV with the ATLAS detector. J. High Energy Phys. 2023, 10, 1. [Google Scholar] [CrossRef]
- Aad, G.; Abbott, B.; Abeling, K.; Abidi, S.H.; Aboulhorma, A.; Abramowicz, H.; Abreu, H.; Abulaiti, Y.; Hoffman, A.C.A.; Acharya, B.S.; et al. Search for pair production of third-generation leptoquarks decaying into a bottom quark and a τ-lepton with the ATLAS detector. Eur. Phys. J. C 2023, 83, 1075. [Google Scholar] [CrossRef]
- The CMS Collaboration. Search for singly and pair-produced leptoquarks coupling to third-generation fermions in proton-proton collisions at s = 13 TeV. Phys. Lett. B 2021, 819, 136446. [Google Scholar] [CrossRef]
- The CMS Collaboration. Searches for additional Higgs bosons and for vector leptoquarks in ττ final states in proton-proton collisions at s = 13 TeV. J. High Energy Phys. 2023, 2023, 73. [Google Scholar] [CrossRef]
- The CMS Collaboration. Search for Scalar Leptoquarks Produced via τ-Lepton–Quark Scattering in pp Collisions at s = 13 TeV. Phys. Rev. Lett. 2024, 132, 061801. [Google Scholar] [CrossRef]
- Abi, B. Muon g-2 Collaboration. Measurement of the Positive Muon Anomalous Magnetic Moment to 0.46 ppm. Phys. Rev. Lett. 2021, 126, 141801. [Google Scholar] [CrossRef]
- Kephart, T.W.; Päs, H. Muon anomalous magnetic moment in string inspired extended family models. Phys. Rev. D 2002, 65, 093014. [Google Scholar] [CrossRef]
- Brune, T.; Kephart, T.W.; Päs, H. Muon g-2 Anomaly from Vectorlike Leptons in TeV scale Trinification and E6 models. arXiv 2022, arXiv:2205.05566. [Google Scholar] [CrossRef]
- Ho, C.M.; Hung, P.Q.; Kephart, T.W. Conformal Completion of the Standard Model with a Fourth Generation. J. High Energy Phys. 2012, 6, 45. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dent, J.B.; Kephart, T.W.; Päs, H.; Weiler, T.J. Flipped Quartification: Product Group Unification with Leptoquarks. Entropy 2024, 26, 533. https://doi.org/10.3390/e26070533
Dent JB, Kephart TW, Päs H, Weiler TJ. Flipped Quartification: Product Group Unification with Leptoquarks. Entropy. 2024; 26(7):533. https://doi.org/10.3390/e26070533
Chicago/Turabian StyleDent, James B., Thomas W. Kephart, Heinrich Päs, and Thomas J. Weiler. 2024. "Flipped Quartification: Product Group Unification with Leptoquarks" Entropy 26, no. 7: 533. https://doi.org/10.3390/e26070533
APA StyleDent, J. B., Kephart, T. W., Päs, H., & Weiler, T. J. (2024). Flipped Quartification: Product Group Unification with Leptoquarks. Entropy, 26(7), 533. https://doi.org/10.3390/e26070533