Tsallis Entropy-Based Complexity-IPE Casualty Plane: A Novel Method for Complex Time Series Analysis
Abstract
:1. Introduction
2. Methods
2.1. Tsallis Improved Permutation Entropy (TIPE)
- Step 1. For a time series {}, normalization is performed by employing Equation (1) for the cumulative distribution function, resulting in the normalized sequence, denoted as . In the equation, and , respectively, represent the mean and variance.
- Step 2. By setting the embedding dimension m and time delay , the time series is reconstructed as follows:
- Step 3. By applying the uniform quantization operator (UQO) as defined in Equation (3), the first column Y(:,1) is transformed into S(:,1), representing the first column of the symbolized phase space.In Equation (3), and are, respectively, the maximum and minimum values of , L is the predetermined discretization parameter, and represents the discrete interval, which satisfies = ( − )/L.
- Step 4. Define Y(:,k) as the k-th column of Y, where . Symbolize Y(:,k) using Equation (4) to obtain S(:,k).
- Step 5. In contrast to other approaches, here we employ Tsallis entropy to compute entropy values, which is a generalized form of Shannon entropy.
2.2. Multiscale Tsallis-Improved Permutation Entropy
2.3. TC-IPE-CP
- Step 1. Define the imbalance of the probability density distribution P according to Equation (8).
- Step 2. Multiplying the normalized Tsallis entropy by the imbalance yields the following complexity:
3. Synthetic Data Analysis
3.1. Noise Signals
3.2. Autoregressive (AR) Time Series
3.3. Noisy Lorenz Signal
4. Experimental Data Analysis
4.1. RR Intervals
4.2. Bearing Fault Signals
4.3. Underwater Acoustic Signals
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef]
- Xu, K.X.; Wang, J. Weighted fractional permutation entropy and fractional sample entropy for nonlinear Potts financial dynamics. Phys. Lett. A 2017, 381, 767–779. [Google Scholar] [CrossRef]
- Li, Y.; Li, G.; Yang, Y.; Liang, X.; Xu, M. A fault diagnosis scheme for planetary gearboxes using adaptive multi-scale morphology filter and modified hierarchical permutation entropy. Mech. Syst. Signal Process. 2018, 105, 319–337. [Google Scholar] [CrossRef]
- Zhou, S.; Qian, S.; Chang, W. A novel bearing multi-fault diagnosis approach based on weighted permutation entropy and an improved SVM ensemble classifier. Sensors 2018, 18, 1934. [Google Scholar] [CrossRef] [PubMed]
- Pincus, S. Approximate entropy (ApEn) as a complexity measure. Chaos 1995, 5, 110–117. [Google Scholar] [CrossRef] [PubMed]
- Richman, J.S.; Moorman, J.R. Physiological time-series analysis using approximate entropy and sample entropy. Am. J. Physiol. 2000, 278, H2039–H2049. [Google Scholar] [CrossRef] [PubMed]
- Bandt, C.; Pompe, B. Permutation entropy: A natural complexity measure for time series. Phys. Rev. Lett. 2002, 88, 174102. [Google Scholar] [CrossRef] [PubMed]
- Fadlallah, B.; Chen, B.D.; Keil, A.; Principe, J. Weighted-permutation entropy: A complexity measure for time series incorporating amplitude information. Phys. Rev. E 2013, 88, 022911. [Google Scholar] [CrossRef] [PubMed]
- Bian, C.; Qin, C.; Ma, Q.D.; Shen, Q. Modified permutation-entropy analysis of heartbeat dynamics. Phys. Rev. E 2012, 85, 021906. [Google Scholar] [CrossRef]
- Rostaghi, M.; Azami, H. Dispersion entropy: A measure for time-series analysis. IEEE Signal Process. Lett. 2016, 23, 610–614. [Google Scholar] [CrossRef]
- Azami, H.; Escudero, J. Amplitude- and Fluctuation-Based Dispersion Entropy. Entropy 2018, 20, 210. [Google Scholar] [CrossRef] [PubMed]
- Costa, M.; Goldberger, A.L.; Peng, C.K. Multiscale entropy to distinguish physiologic and synthetic RR time series. In Computers in Cardiology; IEEE: New York, NY, USA, 2002; pp. 137–140. [Google Scholar]
- Aziz, W.; Arif, M. Multiscale Permutation Entropy of Physiological Time Series. In Proceedings of the 2005 Pakistan Section Multitopic Conference, Karachi, Pakistan, 23–24 December 2005; p. 334494. [Google Scholar]
- Azami, H.; Rostaghi, M.; Abásolo, D.; Escudero, J. Refined Composite Multiscale Dispersion Entropy and its Application to Biomedical Signals. IEEE Trans. Biomed. Eng. 2017, 2017, 2679136. [Google Scholar]
- López-Ruiz, R.; Mancini, H.L.; Calbet, X. A statistical measure of complexity. Phys. Lett. A 1995, 209, 321–326. [Google Scholar] [CrossRef]
- Zhang, B.; Shang, P.; Liu, J. Transition-based complexity-entropy causality diagram: A novel method to characterize complex systems. Commun. Nonlinear Sci. Numer. Simul. 2021, 95, 105660. [Google Scholar] [CrossRef]
- Li, X.; Fan, C.; Qin, J.; Yang, R. Refined composite multivariate multiscale complexity-entropy causality plane analysis for gas-liquid two-phase flow. Z. Naturforschung A 2023, 78, 907–920. [Google Scholar] [CrossRef]
- Tsallis, C. Possible generalization of Boltzmann-Gibbs statistics. J. Stat. Phys. 1988, 52, 479–487. [Google Scholar] [CrossRef]
- Ribeiro, H.V.; Jauregui, M.; Zunino, L.; Lenzi, E.K. Characterizing time series via complexity-entropy curves. Phys. Rev. E 2017, 95, 062106. [Google Scholar] [CrossRef] [PubMed]
- Jauregui, M.; Zunino, L.; Lenzi, E.K.; Mendes, R.; Ribeiro, H. Characterization of time series via Rényi complexity–entropy curves. Phys. A Stat. Mech. Its Appl. 2018, 498, 74–85. [Google Scholar] [CrossRef]
- Freitas, C.G.; Rosso, O.A.; Aquino, A.L. Mapping Network Traffic Dynamics in the Complexity-Entropy Plane. In Proceedings of the 2020 IEEE Symposium on Computers and Communications, Rennes, France, 7–10 July 2020; pp. 1–6. [Google Scholar]
- Peng, K.; Shang, P. Characterizing ordinal network of time series based on complexity-entropy curve. Pattern Recognit. 2022, 124, 108464. [Google Scholar] [CrossRef]
- Lee, M. Early warning detection of thermoacoustic instability using three-dimensional complexity-entropy causality space. Exp. Therm. Fluid Sci. 2022, 130, 110517. [Google Scholar] [CrossRef]
- Chen, Z.; Li, Y.A.; Liang, H.T.; Yu, J. Improved permutation entropy for measuring complexity of time series under noisy condition. Complexity 2019, 2019, 1403829. [Google Scholar] [CrossRef]
- Zhang, Y.; Shang, P.; He, J.; Xiong, H. Cumulative Tsallis entropy based on power spectrum of financial time series. Chaos Interdiscip. J. Nonlinear Sci. 2019, 29, 103118. [Google Scholar] [CrossRef]
- Iyengar, N.; Peng, C.K.; Morin, R.; Goldberger, A.L.; Lipsitz, L.A. Age-related alterations in the fractal scaling of cardiac interbeat interval dynamics. Am. J. Physiol. Regul. Integr. Comp. Physiol. 1996, 271, 1078–1084. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Ma, X.; Fu, J.; Li, Y. Ensemble Improved Permutation Entropy: A New Approach for Time Series Analysis. Entropy 2023, 25, 1175. [Google Scholar] [CrossRef] [PubMed]
- Ragavesh, D.; Scott, M.; Gordon, M. A Novel Bearing Faults Detection Method Using Generalized Gaussian Distribution Refined Composite Multiscale Dispersion Entropy. IEEE Trans. Instrum. Meas. 2022, 71, 3517112. [Google Scholar]
- Santos-Domínguez, D.; Torres-Guijarro, S.; Cardenal-López, A. ShipsEar: An underwater vessel noise database. Appl. Acoust. 2016, 113, 64–69. [Google Scholar] [CrossRef]
α1 | α2 | α3 | α4 | α5 | α6 | α7 | α8 | |
---|---|---|---|---|---|---|---|---|
AR1 | 1/2 | - | - | - | - | - | - | - |
AR2 | 1/2 | 1/4 | - | - | - | - | - | - |
AR3 | 1/2 | 1/4 | 1/8 | - | - | - | - | - |
AR4 | 1/2 | 1/4 | 1/8 | 1/16 | - | - | - | - |
AR5 | 1/2 | 1/4 | 1/8 | 1/16 | 1/32 | - | - | - |
AR6 | 1/2 | 1/4 | 1/8 | 1/16 | 1/32 | 1/64 | - | - |
AR7 | 1/2 | 1/4 | 1/8 | 1/16 | 1/32 | 1/64 | 1/128 | - |
AR8 | 1/2 | 1/4 | 1/8 | 1/16 | 1/32 | 1/64 | 1/128 | 1/256 |
Categories | Ship Name | Number of Segments |
---|---|---|
Passenger | Mar de Cangas | 240 |
Mar de Onza | 130 | |
Pirata de Salvora | 68 | |
Ocean liner | MSC Opera | 163 |
Adventure of the Seas | 95 | |
Costa Voyager | 68 | |
Motorboat | Small yacht | 114 |
Motorboat 2 | 123 | |
High speed motorboat | 92 | |
Zodiac | 99 | |
Ocean noise | Natural ambient noise sample 1 | 85 |
Natural ambient noise sample 2 | 99 | |
Natural ambient noise sample 3 | 98 | |
Natural ambient noise sample 4 | 93 |
Categories | Ship Name | Classification Accuracy | |||
---|---|---|---|---|---|
Passenger | Ocean Liner | Motorboat | Ocean Noise | ||
Passenger | 145 | 5 | 0 | 0 | 96.67% |
Ocean liner | 0 | 150 | 0 | 0 | 100% |
Motorboat | 3 | 12 | 133 | 2 | 88.67% |
Ocean noise | 1 | 0 | 12 | 137 | 91.33% |
In total | - | - | - | - | 94.17% |
Categories | Ship Name | Classification Accuracy | |||
---|---|---|---|---|---|
Passenger | Ocean Liner | Motorboat | Ocean Noise | ||
Passenger | 131 | 0 | 0 | 19 | 87.33% |
Ocean liner | 0 | 150 | 0 | 0 | 100% |
Motorboat | 1 | 0 | 19 | 130 | 12.67% |
Ocean noise | 0 | 0 | 0 | 150 | 100% |
In total | - | - | - | - | 75.00% |
Categories | Ship Name | Classification Accuracy | |||
---|---|---|---|---|---|
Passenger | Ocean Liner | Motorboat | Ocean Noise | ||
Passenger | 141 | 9 | 0 | 0 | 94.00% |
Ocean liner | 0 | 150 | 0 | 0 | 100% |
Motorboat | 3 | 4 | 143 | 0 | 95.33% |
Ocean noise | 0 | 0 | 63 | 87 | 58.00% |
In total | - | - | - | - | 86.83% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Z.; Wu, C.; Wang, J.; Qiu, H. Tsallis Entropy-Based Complexity-IPE Casualty Plane: A Novel Method for Complex Time Series Analysis. Entropy 2024, 26, 521. https://doi.org/10.3390/e26060521
Chen Z, Wu C, Wang J, Qiu H. Tsallis Entropy-Based Complexity-IPE Casualty Plane: A Novel Method for Complex Time Series Analysis. Entropy. 2024; 26(6):521. https://doi.org/10.3390/e26060521
Chicago/Turabian StyleChen, Zhe, Changling Wu, Junyi Wang, and Hongbing Qiu. 2024. "Tsallis Entropy-Based Complexity-IPE Casualty Plane: A Novel Method for Complex Time Series Analysis" Entropy 26, no. 6: 521. https://doi.org/10.3390/e26060521
APA StyleChen, Z., Wu, C., Wang, J., & Qiu, H. (2024). Tsallis Entropy-Based Complexity-IPE Casualty Plane: A Novel Method for Complex Time Series Analysis. Entropy, 26(6), 521. https://doi.org/10.3390/e26060521