Relativistic Consistency of Nonlocal Quantum Correlations
Abstract
:1. Introduction
Do we then have to fall back on ‘no signaling faster than light’ as the expression of the fundamental causal structure of contemporary theoretical physics? That is hard for me to accept. For one thing we have lost the idea that correlations can be explained, or at least this idea awaits reformulation. More importantly, the ‘no signaling…’ notion rests on concepts which are desperately vague, or vaguely applicable. The assertion that ‘we cannot signal faster than light’ immediately provokes the question:Who do we think we are?[2] (p. 245)
- Relativistic spacetime structure includes no absolute temporal order between spacelike separated events.
- Statistical predictions for joint local measurements must be consistent across Lorentz frames that disagree on the order of the measurements (with respect to coordinate time).
2. Quantum Probabilities
2.1. Ideal Measurements
2.2. Time-Order Dependency
3. Relativistic Consistency
3.1. Relativistic Consistency of a Single Quantum Measurement
3.2. Relativistic Consistency of Spacelike Separated Measurements
3.3. From Relativistic Consistency to No-Signaling
3.3.1. Locality Would Imply Relativistic Consistency (but Not Vice Versa)
3.3.2. Relativistic Consistency Implies No-Signaling
3.3.3. No-Signaling Does Not Imply Relativistic Consistency
3.3.4. Discussion
4. Operator Conditions
4.1. Quantum Operations
Efficient Measurements
4.2. Time Order and Relativistic Consistency
4.3. No-Signaling
- (a)
- The general form of the relativistic consistency operator conditions is
- (b)
- The general form of the no-signaling operator conditions is
4.4. Local Commutativity
- So far, we have in terms of operator conditions:
- (i)
- Commutativity of effect and state transformers:
- (ii)
- No-signaling condition for and with respect to :
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shimony, A. Controllable and Uncontrollable Non-Locality. In The Search for a Naturalistic World View; Cambridge University Press: Cambridge, UK, 1993; Volume 2, pp. 130–139. [Google Scholar] [CrossRef]
- Bell, J.S. Speakable and Unspeakable in Quantum Mechanics, 2nd ed.; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
- Hensen, B.; Bernien, H.; Dréau, A.E.; Reiserer, A.; Kalb, N.; Blok, M.S.; Ruitenberg, J.; Vermeulen, R.F.L.; Schouten, R.N.; Abellán, C.; et al. Loophole-Free Bell Inequality Violation Using Electron Spins Separated by 1.3 Kilometres. Nature 2015, 526, 682–686. [Google Scholar] [CrossRef] [PubMed]
- Jarrett, J.P. On the Physical Significance of the Locality Conditions in the Bell Arguments. Noûs 1984, 18, 569–589. [Google Scholar] [CrossRef]
- Wiseman, H.M. The Two Bell’s Theorems of John Bell. J. Phys. Math. Theor. 2014, 47, 424001. [Google Scholar] [CrossRef]
- Healey, R. The Quantum Revolution in Philosophy; Oxford University Press: Oxford, UK, 2019. [Google Scholar]
- Barandes, J.A. New Prospects for a Causally Local Formulation of Quantum Theory. arXiv 2024. [Google Scholar] [CrossRef]
- Norsen, T. Local Causality and Completeness: Bell vs. Jarrett. Found. Phys. 2009, 39, 273–294. [Google Scholar] [CrossRef]
- Berkovitz, J. Action at a Distance in Quantum Mechanics. In The Stanford Encyclopedia of Philosophy, Spring 2016 ed.; Zalta, E.N., Ed.; Metaphysics Research Lab, Stanford University: Stanford, CA, USA, 2016. [Google Scholar]
- Maudlin, T. Quantum Non-Locality and Relativity, 3rd ed.; Wiley-Blackwell: Hoboken, NJ, USA, 2011. [Google Scholar]
- Feinberg, G. Possibility of Faster-Than-Light Particles. Phys. Rev. 1967, 159, 1089–1105. [Google Scholar] [CrossRef]
- Rolnick, W.B. Implications of Causality for Faster-than-Light Matter. Phys. Rev. 1969, 183, 1105–1108. [Google Scholar] [CrossRef]
- Benford, G.A.; Book, D.L.; Newcomb, W.A. The Tachyonic Antitelephone. Phys. Rev. D 1970, 2, 263–265. [Google Scholar] [CrossRef]
- Berkovitz, J. Aspects of Quantum Non-Locality II: Superluminal Causation and Relativity. Stud. Hist. Philos. Sci. Part B Stud. Hist. Philos. Mod. Phys. 1998, 29, 509–545. [Google Scholar] [CrossRef]
- Garrison, J.C.; Mitchell, M.W.; Chiao, R.Y.; Bolda, E.L. Superluminal Signals: Causal Loop Paradoxes Revisited. Phys. Lett. A 1998, 245, 19–25. [Google Scholar] [CrossRef]
- Peres, A. Classical Interventions in Quantum Systems. II. Relativistic Invariance. Phys. Rev. A 2000, 61, 022117. [Google Scholar] [CrossRef]
- Tolman, R. The Theory of the Relativity of Motion; University of California Press: Berkeley, CA, USA, 1917. [Google Scholar]
- Wheeler, J.A.; Feynman, R.P. Classical Electrodynamics in Terms of Direct Interparticle Action. Rev. Mod. Phys. 1949, 21, 425–433. [Google Scholar] [CrossRef]
- Tumulka, R. A Relativistic Version of the Ghirardi–Rimini–Weber Model. J. Stat. Phys. 2006, 125, 821–840. [Google Scholar] [CrossRef]
- Dürr, D.; Goldstein, S.; Norsen, T.; Struyve, W.; Zanghì, N. Can Bohmian Mechanics Be Made Relativistic? Proc. R. Soc. A 2013, 470, 2162. [Google Scholar] [CrossRef] [PubMed]
- Bedingham, D.; Dürr, D.; Ghirardi, G.C.; Goldstein, S.; Tumulka, R.; Zanghì, N. Matter Density and Relativistic Models of Wave Function Collapse. J. Stat. Phys. 2014, 154, 623–631. [Google Scholar] [CrossRef]
- Beck, C. Wavefunctions and Minkowski Space-Time: On the Reconciliation of Quantum Theory with Special Relativity. arXiv 2020. [Google Scholar] [CrossRef]
- Fine, A. Joint Distributions, Quantum Correlations, and Commuting Observables. J. Math. Phys. 1982, 23, 1306–1310. [Google Scholar] [CrossRef]
- Goldstein, S.; Norsen, T.; Tausk, D.V.; Zanghì, N. Bell’s Theorem. Scholarpedia 2011, 6, 8378. [Google Scholar] [CrossRef]
- Norsen, T. Bell’s Concept of Local Causality. Am. J. Phys. 2011, 79, 1261–1275. [Google Scholar] [CrossRef]
- Maudlin, T. What Bell Did. J. Phys. A Math. Theor. 2014, 47, 424010. [Google Scholar] [CrossRef]
- Beck, C. Local Quantum Measurement and Relativity; Fundamental Theories of Physics; Springer International Publishing: Cham, Switzerland, 2021; Volume 201. [Google Scholar] [CrossRef]
- Kraus, K.; Böhm, A.; Dollard, J.D.; Wootters, W.H. (Eds.) States, Effects, and Operations; Lecture Notes in Physics; Springer: Berlin/Heidelberg, Germany, 1983; Volume 190. [Google Scholar] [CrossRef]
- Nielsen, M.A.; Chuang, I.L. Quantum Computation and Quantum Information, 10th ed.; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
- Choi, M.D. Completely Positive Linear Maps on Complex Matrices. Linear Algebra Its Appl. 1975, 10, 285–290. [Google Scholar] [CrossRef]
- Jamiołkowski, A. Linear Transformations Which Preserve Trace and Positive Semidefiniteness of Operators. Rep. Math. Phys. 1972, 3, 275–278. [Google Scholar] [CrossRef]
- Busch, P.; Grabowski, M.; Lahti, P.J. Operational Quantum Physics; Lecture Notes in Physics Monographs; Springer: Berlin/Heidelberg, Germany, 1995; Volume 31. [Google Scholar] [CrossRef]
- Dürr, D.; Goldstein, S.; Zanghì, N. Quantum Equilibrium and the Role of Operators as Observables in Quantum Theory. J. Stat. Phys. 2004, 116, 959–1055. [Google Scholar] [CrossRef]
- Arias, A.; Gheondea, A.; Gudder, S. Fixed Points of Quantum Operations. J. Math. Phys. 2002, 43, 5872–5881. [Google Scholar] [CrossRef]
- Haag, R. Local Quantum Physics; Springer: Berlin/Heidelberg, Germany, 1996. [Google Scholar] [CrossRef]
- Heinosaari, T.; Wolf, M.M. Nondisturbing Quantum Measurements. J. Math. Phys. 2010, 51, 092201. [Google Scholar] [CrossRef]
Projective Measurements | ||
---|---|---|
Ideal | ||
Reproducible | ||
Non-Reproducible | ||
Non-Projective Measurements | ||
Lüders Measurements | ||
General Measurements |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Beck, C.; Lazarovici, D. Relativistic Consistency of Nonlocal Quantum Correlations. Entropy 2024, 26, 548. https://doi.org/10.3390/e26070548
Beck C, Lazarovici D. Relativistic Consistency of Nonlocal Quantum Correlations. Entropy. 2024; 26(7):548. https://doi.org/10.3390/e26070548
Chicago/Turabian StyleBeck, Christian, and Dustin Lazarovici. 2024. "Relativistic Consistency of Nonlocal Quantum Correlations" Entropy 26, no. 7: 548. https://doi.org/10.3390/e26070548
APA StyleBeck, C., & Lazarovici, D. (2024). Relativistic Consistency of Nonlocal Quantum Correlations. Entropy, 26(7), 548. https://doi.org/10.3390/e26070548