Quantum Dynamical Interpretation of the Mean Strategy
Abstract
:1. Introduction
- (1)
- Utilizing a novel theoretical method, quantum dynamics, to study and analyze the mean strategy of the optimization algorithm, offering a fresh perspective for optimization algorithm research.
- (2)
- Employing the double well function and the CEC2013 test suite, conducting controlled experiments, performing comprehensive analyses of the mean strategy, and demonstrating its effectiveness.
- (3)
- Analyzing the convergence process of the optimization algorithm using the wave function.
2. Related Work
3. Quantum Dynamic Frame for Swarm Intelligence Algorithms
3.1. Quantum Dynamic Equation of Optimization Problem
3.2. Diffusion Model of QDF
3.3. Reaction–Diffusion Model of QDF
3.4. Quantum Harmonic Oscillator Model of QDF
3.5. Basic Iteration Process of Optimization Algorithm
Algorithm 1 Pseudocode of BIP with mean strategy |
|
3.6. Ground State Convergence Theory
4. Theory of Mean Strategy
4.1. Analysis of the Characteristics of the Quantum Harmonic Oscillator Model
4.2. The Physical Implications of the Mean Strategy
4.3. Mean Strategy of SI Algorithm
Algorithm 2 Pseudocode of BIP with mean strategy |
Input: particles number k, left boundary , right boundary , domain , scale Output:
|
5. Experiment
5.1. Test Functions
5.1.1. Double Well Function
5.1.2. CEC2013 Test Suite
5.2. Parameter Settings
5.3. Convergence Analysis
5.4. Exploration and Exploitation
5.5. Solution Accuracy Discussion of Mean Strategy
5.6. Stability Discussion of the Mean Strategy
5.7. Effectiveness Discussion of the Mean Strategy
5.8. Solving Speed Discussion of Mean Strategy
6. Conclusions and Future Works
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
SI | Swarm Intelligence |
PSO | Particle Swarm Optimization |
QPSO | Quantum-behaved Particle swarm Optimization |
WQPSO | Weighted Quantum-behaved Particle swarm Optimization |
MPSO | Median-oriented Particle Swarm Optimization |
MGWO | Mean Gray Wolf Optimization |
QMBA | Quantum-behaved Bat Algorithm with Mean Best Position Directed |
EHO | Elephant Herding Optimization |
CS | Cuckoo Search |
GQBA | Gaussian Quantum Bat Algorithm |
SHADE | Success-History Based Parameter Adaptation Differential Evolution |
CSHADE | Center-based mutation for Success-History based parameter Adaptation |
Differential Evolution | |
MQHOA | Multi-scale quantum harmonic optimization algorithm |
QDF | Quantum Dynamic Frame |
QDE | Quantum Dynamic Equation |
BIP | Basic Iteration Process |
DWF | Double Well Function |
MQHOA | Multi-scale Quantum Harmonic Optimization Algorithm |
TELA | Two Energy Level Approximation |
References
- Eberhart, R.; Kennedy, J. Particle swarm optimization. In Proceedings of the IEEE International Conference on Neural Networks, Perth, WA, Australia, 27 November–1 December 1995; Citeseer: Princeton, NJ, USA, 1995; Volume 4, pp. 1942–1948. [Google Scholar]
- Sun, J.; Feng, B.; Xu, W. Particle swarm optimization with particles having quantum behavior. In Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No. 04TH8753), Portland, OR, USA, 19–23 June 2004; IEEE: Piscataway, NJ, USA, 2004; Volume 1, pp. 325–331. [Google Scholar]
- Yang, X.S.; Deb, S. Cuckoo search via Lévy flights. In Proceedings of the 2009 World Congress on Nature & Biologically Inspired Computing (NaBIC), Coimbatore, India, 9–11 December 2009; IEEE: Piscataway, NJ, USA, 2009; pp. 210–214. [Google Scholar]
- Wang, P.; Wang, F. Overview of Intelligent Optimization Algorithms from the Perspective of Quantum. J. Univ. Electron. Sci. Technol. China 2022, 51, 14. [Google Scholar]
- Wang, P.; Chen, Y.; Xin, G.; Jiao, Y.; Yin, X.; Yang, G.; Zhou, Y.; Mu, L.; Wang, F. A brief study on quantum dynamics of optimization algorithm. J. Southwest Minzu Univ. (Nat. Sci. Ed.) 2021, 47, 288–296. [Google Scholar]
- Zhang, J.; Zhan, Z. Computational Intelligence; Tsinghua University Press: Beijing, China, 2009. [Google Scholar]
- Kennedy, J. Stereotyping: Improving particle swarm performance with cluster analysis. In Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No. 00TH8512), La Jolla, CA, USA, 16–19 July 2000; IEEE: Piscataway, NJ, USA, 2000; Volume 2, pp. 1507–1512. [Google Scholar]
- Xu, G. An adaptive parameter tuning of particle swarm optimization algorithm. Appl. Math. Comput. 2013, 219, 4560–4569. [Google Scholar] [CrossRef]
- Beheshti, Z.; Shamsuddin, S.M.H.; Hasan, S. MPSO: Median-oriented particle swarm optimization. Appl. Math. Comput. 2013, 219, 5817–5836. [Google Scholar] [CrossRef]
- Yu, K.; Wang, X.; Wang, Z. Multiple learning particle swarm optimization with space transformation perturbation and its application in ethylene cracking furnace optimization. Knowl.-Based Syst. 2016, 96, 156–170. [Google Scholar] [CrossRef]
- Sun, J.; Xu, W.; Feng, B. A global search strategy of quantum-behaved particle swarm optimization. In Proceedings of the IEEE Conference on Cybernetics and Intelligent Systems, The Hague, Netherlands, 10–13 October 2004; IEEE: Piscataway, NJ, USA, 2004; Volume 1, pp. 111–116. [Google Scholar]
- Xi, M.; Sun, J.; Xu, W. An improved quantum-behaved particle swarm optimization algorithm with weighted mean best position. Appl. Math. Comput. 2008, 205, 751–759. [Google Scholar] [CrossRef]
- Cai, Y.; Sun, J.; Wang, J.; Ding, Y.; Tian, N.; Liao, X.; Xu, W. Optimizing the codon usage of synthetic gene with QPSO algorithm. J. Theor. Biol. 2008, 254, 123–127. [Google Scholar] [CrossRef]
- Zhou, N.R.; Xia, S.H.; Ma, Y.; Zhang, Y. Quantum particle swarm optimization algorithm with the truncated mean stabilization strategy. Quantum Inf. Process. 2022, 21, 42. [Google Scholar] [CrossRef]
- Wang, G.G.; Deb, S.; Coelho, L.d.S. Elephant herding optimization. In Proceedings of the 2015 3rd International Symposium on Computational and Business Intelligence (ISCBI), Bali, Indonesia, 7–9 December 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 1–5. [Google Scholar]
- Cheung, N.J.; Ding, X.M.; Shen, H.B. A nonhomogeneous cuckoo search algorithm based on quantum mechanism for real parameter optimization. IEEE Trans. Cybern. 2016, 47, 391–402. [Google Scholar] [CrossRef]
- Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey wolf optimizer. Adv. Eng. Softw. 2014, 69, 46–61. [Google Scholar] [CrossRef]
- Singh, N.; Singh, S. A modified mean gray wolf optimization approach for benchmark and biomedical problems. Evol. Bioinform. 2017, 13, 1176934317729413. [Google Scholar] [CrossRef] [PubMed]
- Singh, N. A modified variant of grey wolf optimizer. Sci. Iran. 2020, 27, 1450–1466. [Google Scholar] [CrossRef]
- Huang, X.; Li, C.; Pu, Y.; He, B. Gaussian quantum bat algorithm with direction of mean best position for numerical function optimization. Comput. Intell. Neurosci. 2019, 2019. [Google Scholar] [CrossRef]
- Hiba, H.; El-Abd, M.; Rahnamayan, S. Improving SHADE with center-based mutation for large-scale optimization. In Proceedings of the 2019 IEEE Congress on Evolutionary Computation (CEC), Wellington, New Zealand, 10–13 June 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1533–1540. [Google Scholar]
- Ye, X.; Wang, P.; Xin, G.; Jin, J.; Huang, Y. Multi-scale quantum harmonic oscillator algorithm with truncated mean stabilization strategy for global numerical optimization problems. IEEE Access 2019, 7, 18926–18939. [Google Scholar] [CrossRef]
- Ye, X.; Wang, P. Impact of migration strategies and individual stabilization on multi-scale quantum harmonic oscillator algorithm for global numerical optimization problems. Appl. Soft Comput. 2019, 85, 105800. [Google Scholar] [CrossRef]
- Wang, F.; Wang, P.; Jiao, Y. Research on the Utilization of Mean Value Information in Optimization Algorithm. J. Northeast. Univ. (Nat. Sci.) 2024, 45, 49. [Google Scholar]
- Li, Y.; Xiang, Z.; Xia, J. Dynamical System Models and Convergence Analysis for Simulated Annealing Algorithm. Chin. J. Comput. 2019, 42, 1161–1173. [Google Scholar]
- D’Andrea, F.; Kurkov, M.A.; Lizzi, F. Wick rotation and fermion doubling in noncommutative geometry. Phys. Rev. D 2016, 94, 025030. [Google Scholar] [CrossRef]
- Wang, P.; Xin, G.; Wang, F. Investigation of bare-bones algorithms from quantum perspective: A quantum dynamical global optimizer. arXiv 2021, arXiv:2106.13927. [Google Scholar]
- Wang, F.; Wang, P. Convergence of the quantum dynamics framework for optimization algorithm. Quantum Inf. Process. 2024, 23. [Google Scholar] [CrossRef]
- Kohn, R.V. The relaxation of a double-well energy. Contin. Mech. Thermodyn. 1991, 3, 193–236. [Google Scholar] [CrossRef]
- Griffiths, D.J.; Schroeter, D.F. Introduction to Quantum Mechanics; Cambridge University Press: Cambridge, UK, 2018. [Google Scholar]
- Stella, L.; Santoro, G.E.; Tosatti, E. Optimization by quantum annealing: Lessons from simple cases. Phys. Rev. B 2005, 72, 014303. [Google Scholar] [CrossRef]
- Finnila, A.B.; Gomez, M.; Sebenik, C.; Stenson, C.; Doll, J.D. Quantum annealing: A new method for minimizing multidimensional functions. Chem. Phys. Lett. 1994, 219, 343–348. [Google Scholar] [CrossRef]
- Johnson, M.W.; Amin, M.H.; Gildert, S.; Lanting, T.; Hamze, F.; Dickson, N.; Harris, R.; Berkley, A.J.; Johansson, J.; Bunyk, P.; et al. Quantum annealing with manufactured spins. Nature 2011, 473, 194–198. [Google Scholar] [CrossRef]
- Wang, P.; Yang, G. Using double well function as a benchmark function for optimization algorithm. In Proceedings of the 2021 IEEE Congress on Evolutionary Computation (CEC), Krakow, Poland, 28 June–1 July 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 886–892. [Google Scholar]
- Črepinšek, M.; Liu, S.H.; Mernik, M. Exploration and exploitation in evolutionary algorithms: A survey. ACM Comput. Surv. (CSUR) 2013, 45, 1–33. [Google Scholar] [CrossRef]
- Li, J.; Tan, Y. Loser-out tournament-based fireworks algorithm for multimodal function optimization. IEEE Trans. Evol. Comput. 2017, 22, 679–691. [Google Scholar] [CrossRef]
SI Algorithm | Quantum Mechanics |
---|---|
Objective Function | Potential Field |
Solution to Optimization Problem | Wave function |
Optimal Solution | Ground State Wave Function |
Local Optimal Solution | Excited State Wave Function |
Dynamic Equation of SI Algorithm | Schrödinger Equation |
Iteration Process | Evolution of Wave Function |
Probability Distribution of the Solution | Modulus Square of the Wave Function |
Reception for Worse Solution | Two Energy Level Approximation |
Population Sampling | Kinetic Energy |
Categories | No. | Functions |
---|---|---|
Unimodal Functions | 1 | Sphere Function |
2 | Rotated High Conditioned Elliptic Function | |
3 | Rotated Bent Cigar Function | |
4 | Rotated Discus Function | |
5 | Different Powers Function | |
Basic Multimodal Functions | 6 | Rotated Rosenbrocks Function |
7 | Rotated Schaffers F7 Function | |
8 | Rotated Ackleys Function | |
9 | Rotated Weierstrass Function | |
10 | Rotated Griewanks Function | |
11 | Rastrigins Function | |
12 | Rotated Rastrigins Function | |
13 | Non-Continuous Rotated Rastrigins Function | |
14 | Schwefel’s Function | |
15 | Rotated Schwefel’s Function | |
16 | Rotated Katsuura Function | |
17 | Lunacek Bi_Rastrigin Function | |
18 | Rotated Lunacek Bi_Rastrigin Function | |
19 | Expanded Griewanks plus Rosenbrocks Function | |
20 | Expanded Scaffers F6 Function | |
Composition Functions | 21 | Composition Function 1 (Rotated) |
22 | Composition Function 2 (Unrotated) | |
23 | Composition Function 3 (Rotated) | |
24 | Composition Function 4 (Rotated) | |
25 | Composition Function 5 (Rotated) | |
26 | Composition Function 6 (Rotated) | |
27 | Composition Function 7 (Rotated) | |
28 | Composition Function 8 (Rotated) |
Parameter | k | Repeat Times | Max Iterations | |
---|---|---|---|---|
setting | 30 | 2 | 51 | 300,000 |
BIP | BIP-Mean | MQHOA-wmn | |||||||
---|---|---|---|---|---|---|---|---|---|
MEAN-ERR | STD-ERR | MIN-ERR | MEAN-ERR | STD-ERR | MIN-ERR | MEAN-ERR | STD-ERR | MIN-ERR | |
1.02 × 102 | 1.09 × 102 | 1.24 × 101 | 3.34 × 10−13 | 1.15 × 10−13 | 2.27 × 10−13 | 2.19 × 101 | 1.03 × 101 | 6.64 × 100 | |
2.34 × 108 | 5.19 × 107 | 1.02 × 108 | 1.43 × 106 | 2.45 × 105 | 1.02 × 106 | 3.06 × 107 | 4.20 × 106 | 2.41 × 107 | |
3.57 × 1010 | 2.32 × 1010 | 1.25 × 1010 | 1.54 × 107 | 1.66 × 107 | 8.51 × 105 | 1.22 × 109 | 3.84 × 108 | 5.98 × 108 | |
5.44 × 104 | 7.80 × 103 | 3.61 × 104 | 3.11 × 104 | 3.86 × 103 | 2.25 × 104 | 1.37 × 104 | 2.19 × 103 | 9.78 × 103 | |
3.87 × 103 | 7.35 × 102 | 1.51 × 103 | 2.02 × 10−3 | 3.04 × 10−4 | 1.42 × 10−3 | 1.75 × 102 | 9.78 × 101 | 1.21 × 102 | |
5.23 × 102 | 6.53 × 101 | 3.25 × 102 | 2.33 × 101 | 2.14 × 101 | 4.41 × 10−1 | 9.90 × 101 | 1.81 × 101 | 5.57 × 101 | |
1.62 × 102 | 4.90 × 101 | 1.15 × 102 | 1.41 × 101 | 9.58 × 100 | 2.49 × 100 | 4.57 × 101 | 8.71 × 100 | 3.15 × 101 | |
2.10 × 101 | 4.54 × 10−2 | 2.08 × 101 | 2.10 × 101 | 4.77 × 10−2 | 2.08 × 101 | 2.09 × 101 | 5.13 × 10−2 | 2.08 × 101 | |
3.92 × 101 | 1.01 × 100 | 3.65 × 101 | 3.96 × 101 | 1.09 × 100 | 3.53 × 101 | 3.94 × 101 | 1.44 × 100 | 3.63 × 101 | |
9.29 × 102 | 9.79 × 101 | 7.07 × 102 | 2.45 × 10−1 | 1.89 × 10−1 | 6.16 × 10−2 | 5.83 × 101 | 6.90 × 100 | 4.24 × 101 | |
3.09 × 102 | 2.03 × 101 | 2.67 × 102 | 1.66 × 102 | 5.32 × 101 | 6.96 × 100 | 2.14 × 102 | 1.36 × 101 | 1.83 × 102 | |
3.15 × 102 | 1.31 × 101 | 2.86 × 102 | 1.56 × 102 | 5.47 × 101 | 2.19 × 101 | 2.12 × 102 | 1.28 × 101 | 1.82 × 102 | |
3.12 × 102 | 1.61 × 101 | 2.66 × 102 | 1.84 × 102 | 1.95 × 101 | 1.07 × 102 | 2.16 × 102 | 1.40 × 101 | 1.73 × 102 | |
7.40 × 103 | 2.46 × 102 | 6.90 × 103 | 7.29 × 103 | 3.02 × 102 | 6.56 × 103 | 7.37 × 103 | 2.20 × 102 | 6.89 × 103 | |
7.38 × 103 | 2.89 × 102 | 6.51 × 103 | 7.35 × 103 | 2.82 × 102 | 6.63 × 103 | 7.27 × 103 | 3.12 × 102 | 6.31 × 103 | |
2.51 × 100 | 2.68 × 10−1 | 1.91 × 100 | 2.53 × 100 | 2.92 × 10−1 | 1.77 × 100 | 2.40 × 100 | 2.85 × 10−1 | 1.85 × 100 | |
3.48 × 102 | 1.21 × 101 | 3.19 × 102 | 2.10 × 102 | 1.24 × 101 | 1.79 × 102 | 2.39 × 102 | 1.21 × 101 | 1.99 × 102 | |
3.49 × | 2.61 × | 3.12 × | 2.12 × | 1.18 × | 1.88 × | 2.41 × | 9.65 × | 2.25 × | |
3.08 × | 2.43 × | 3.75 × | 1.52 × | 1.40 × | 1.13 × | 2.02 × | 1.29 × | 1.76 × | |
1.45 × | 2.25 × | 1.39 × | 1.19 × | 2.69 × | 1.12 × | 1.26 × | 4.78 × | 1.17 × | |
1.25 × | 9.05 × | 1.04 × | 3.46 × | 9.09 × | 2.00 × | 4.12 × | 9.46 × | 3.39 × | |
7.74 × | 3.07 × | 6.85 × | 7.65 × | 3.39 × | 6.80 × | 7.67 × | 3.44 × | 6.74 × | |
7.91 × | 2.80 × | 7.10 × | 7.76 × | 3.24 × | 7.09 × | 7.82 × | 3.16 × | 7.10 × | |
3.15 × | 1.13 × | 2.96 × | 2.30 × | 6.72 × | 2.16 × | 2.45 × | 2.51 × | 2.37 × | |
3.47 × | 5.10 × | 3.31 × | 2.89 × | 2.81 × | 2.51 × | 2.92 × | 4.08 × | 2.35 × | |
2.24 × | 5.86 × | 2.11 × | 2.10 × | 3.08 × | 2.00 × | 2.22 × | 5.02 × | 2.01 × | |
1.40 × | 2.94 × | 1.32 × | 6.58 × | 7.29 × | 5.12 × | 7.92 × | 3.58 × | 6.96 × | |
2.19 × | 2.10 × | 1.00 × | 3.00 × | 1.29 × | 3.00 × | 4.28 × | 3.64 × | 3.75 × |
p-Value | Crouping | BIP-Mean vs. BIP | MQHOA-wmn vs. BIP | BIP-Mean vs. MQHOA-wmn | |
---|---|---|---|---|---|
9.49 × | 9.7555 × | 1.46343 × | |||
3.30 × | 3.01986 × | 3.01986 × | |||
3.30 × | 3.01986 × | 3.01986 × | |||
4.70 × | 3.01986 × | 3.01986 × | |||
3.30 × | 3.01986 × | 3.01986 × | |||
3.30 × | 3.01986 × | 1.20567 × | |||
3.30 × | 3.01986 × | 1.77691 × | |||
7.13 × | 0.122352926 | 0.923442132 | |||
1.75 × | 0.482516904 | 0.325526587 | |||
3.30 × | 3.01986 × | 3.01608 × | |||
3.30 × | 3.01986 × | 7.08811 × | |||
3.30 × | 3.01986 × | 2.0338 × | |||
3.30 × | 3.01986 × | 1.84999 × | |||
1.41 × | 0.911708975 | 0.363222313 | |||
5.12 × | 0.067868861 | 0.982307053 | |||
6.54 × | 0.200948897 | 0.059427915 | |||
3.30 × | 3.01986 × | 4.1825 × | |||
3.30 × | 3.01986 × | 4.97517 × | |||
3.30 × | 3.01986 × | 3.01986 × | |||
3.30 × | 3.01986 × | 3.96477 × | |||
4.09 × | 3.01986 × | 9.45134 × | |||
1.43 × | 0.311187643 | 0.853381737 | |||
1.63 × | 0.728265296 | 0.233988916 | |||
3.30 × | 3.01986 × | 4.07716 × | |||
3.30 × | 1.95678 × | 0.970516051 | |||
1.63 × | 1.10772 × | 0.371077032 | |||
3.30 × | 3.01986 × | 5.96731 × | |||
1.39 × | 3.01986 × | 1.21178 × |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, F.; Wang, P.; Jiao, Y. Quantum Dynamical Interpretation of the Mean Strategy. Entropy 2024, 26, 719. https://doi.org/10.3390/e26090719
Wang F, Wang P, Jiao Y. Quantum Dynamical Interpretation of the Mean Strategy. Entropy. 2024; 26(9):719. https://doi.org/10.3390/e26090719
Chicago/Turabian StyleWang, Fang, Peng Wang, and Yuwei Jiao. 2024. "Quantum Dynamical Interpretation of the Mean Strategy" Entropy 26, no. 9: 719. https://doi.org/10.3390/e26090719
APA StyleWang, F., Wang, P., & Jiao, Y. (2024). Quantum Dynamical Interpretation of the Mean Strategy. Entropy, 26(9), 719. https://doi.org/10.3390/e26090719