A Hyperbolic Sum Rule for Probability: Solving Recursive (“Chicken and Egg”) Problems
Abstract
:1. Introduction I: Probabilities
1.1. Overview
1.2. Probability in Science
1.3. Probability Is Physical
w/c = {u/c + v/c}/{1 + uv/c2}
Φ ≡ exp(−2ikΔz)
which is suggestive of Karen Barad’s (2007 [34]) insistence that the distinction between ontology and epistemology is not a real one, and therefore, speaking strictly we should refer to “onto-epistemology” ([34], p. 43). Skilling and Knuth also say this ([33], §1).The ontology–epistemology divide is, for quantitation at least, a distinction without a difference. A bit of information carries no flag to inform us whether it was assigned by a conscious agent or by a mechanical switch. Our job in science is to make sense of our observations, not to indulge in empty disputation between isomorphic views. Our goal here is derivation of a calculus fit for general purpose. Ontology and epistemology share the same symmetries, the same rules, and the same assignments. So, they share a common calculus.
But, if our object can perturb a partner object, then by symmetry the partner object can also perturb our object. We could assign either role to either.
Our calculus, whatever it is, must be capable of representing such interactions … This insight that interactions are basic is the source of “quantum-ness”.
1.4. Maximum Entropy
2. Introduction II: Sum Rules
2.1. The Conventional Sum Rule (I)
= p(A|BC) p(B|C)
= p(B|AC) p(A|C)
2.2. The Venn Diagram
2.3. Recursion: Chicken and Egg
= p(A|C) + p(B|C) − p(B|AC) p(A|C)
2.4. The Conventional Sum Rule (II)
3. A General “Hyperbolic Sum Rule” (HSR)
3.1. Proving the HSR Theorem
3.2. Some Analytical and Numerical Comparisons
3.3. Concatenation Rules for Multiple Hypotheses
4. Discussion
4.1. Probability Is Physical
4.2. Recursion
4.3. Two Distinct Sum Rules
4.4. Motivation for the HSR: An Example
5. Summary and Future Work
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendices: MaxEnt Properties of the Sum Rules for Probabilities
Appendix A.1. Maximum Entropy Criterion for Sum Rules
Appendix A.2. Inadmissible “MaxEnt” Sum Rules
Appendix A.3. Hyperbolic Sum Rule Is MaxEnt
Appendix A.4. MaxEnt Treatment of HSR Featuring Multiple Hypotheses
Appendix A.4.1. ‘OR’ Treatment of Multiple Conditional Hypotheses
Appendix A.4.2. Generalisation of the Concatenated “HSR” for Multiple Hypotheses
Appendix A.4.3. Sum Rule for Multiple Hypotheses with Multiple Conditionalities
Appendix A.4.4. Generalised Hyperbolic Sum Rule for Multiple Hypotheses
Appendix A.4.5. Maximum Entropy Analysis for “HSR” of Multiple Hypotheses
Appendix A.5. Generalising the Conventional Sum Rule (CSR)
Appendix A.5.1. Concatenation Rules for CSR
Appendix A.5.2. CSR Is MaxEnt in Its (Non-Recursive) Domain of Application
Appendix A.5.3. HSR and CSR Entropies Compared
Appendix A.6. A Sum Rule for Finite and Infinite Impulse Response Filters
References
- Cox, R.T. Probability, frequency and reasonable expectation. Am. J. Phys. 1946, 14, 1–13. [Google Scholar] [CrossRef]
- Jaynes, E.T. Probability Theory: The Logic of Science; Larry Bretthorst, G., Ed.; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar] [CrossRef]
- Jaynes, E.T. On the Rationale of Maximum Entropy Methods. Proc. IEEE 1982, 70, 939–952. [Google Scholar] [CrossRef]
- Caticha, A. Lectures on Probability, Entropy, and Statistical Physics. In Proceedings of the 28th International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering (MaxEnt 2008), Boraceia Beach, Sao Paulo, Brazil, 8–13 July 2008. [Google Scholar] [CrossRef]
- Parker, M.C.; Jeynes, C. Maximum Entropy (Most Likely) Double Helical and Double Logarithmic Spiral Trajectories in Space-Time. Sci. Rep. 2019, 9, 10779. [Google Scholar] [CrossRef] [PubMed]
- Parker, M.C.; Jeynes, C.; Catford, W.N. Halo Properties in Helium Nuclei from the Perspective of Geometrical Thermodynamics. Ann. Phys. 2022, 534, 2100278. [Google Scholar] [CrossRef]
- Goodman, S. A Dirty Dozen: Twelve P-Value Misconceptions. Semin. Hematol. 2008, 45, 135–140. [Google Scholar] [CrossRef]
- Halsey, L.G. The reign of the p-value is over: What alternative analyses could we employ to fill the power vacuum? Biol. Lett. 2019, 15, 20190174. [Google Scholar] [CrossRef]
- Smaldino, P.E.; McElreath, R. The natural selection of bad science. R. Soc. Open Sci. 2016, 3, 160384. [Google Scholar] [CrossRef]
- Gödel, K. Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I (On Formally Undecidable Propositions of Principia Mathematica and Related Systems I). Monatshefte Math. Phys. 1931, 38, 173–198, (reprinted in English in: Hawking, S. (Ed.) God Created the Integers; Running Press: Philadelphia, PA, USA, 2005). [Google Scholar] [CrossRef]
- Jeynes, C.; Parker, M.C.; Barker, M. The Poetics of Physics. Philosophies 2023, 8, 3. [Google Scholar] [CrossRef]
- Jeynes, C.; Parker, M.C. The Integral Nature of the Scientific Enterprise. Available online: https://www.preprints.org/manuscript/202408.1674/v1 (accessed on 9 January 2025).
- Enßlin, T.A.; Jasche, J.; Skilling, J. The Physics of Information. Ann. Phys. 2019, 531, 1900059. [Google Scholar] [CrossRef]
- Caldwell, A. Aspects of Frequentism. Ann. Phys. 2019, 531, 1700457. [Google Scholar] [CrossRef]
- Landauer, R. Information is Physical. Phys. Today 1991, 44, 23–29. [Google Scholar] [CrossRef]
- Parker, M.C.; Wright, P.; Lord, A. Multiple Fiber, Flexgrid Elastic Optical Network Design using MaxEnt Optimization [Invited]. J. Opt. Commun. Netw. 2015, 7, B194–B201. [Google Scholar] [CrossRef]
- Jaynes, E.T. Where Do We Stand on Maximum Entropy? (1978). In Papers on Probability, Statistics and Statistical Physics; Rosenkrantz, R.D., Ed.; Synthese Library; Springer: Dordrecht, The Netherlands, 1983; Volume 158, (reprinted 1989). [Google Scholar] [CrossRef]
- Enßlin, T.A. Information Theory for Fields. Ann. Phys. 2019, 531, 1800127. [Google Scholar] [CrossRef]
- Toll, J.S. Causality and the dispersion relation: Logical foundations. Phys. Rev. B 1956, 104, 1760–1770. [Google Scholar] [CrossRef]
- Parker, M.C.; Walker, S.D. A Dynamic Model of Information and Entropy. Entropy 2010, 12, 80–88. [Google Scholar] [CrossRef]
- Primas, H. Time, Temporality, Now: The Representation of Facts in Physical Theories; Springer: Berlin/Heidelberg, Germany, 1997; p. 241. [Google Scholar]
- Parker, M.C.; Walker, S.D. Information transfer and Landauer’s principle. Opt. Commun. 2004, 229, 23–27. [Google Scholar] [CrossRef]
- Parker, M.C.; Jeynes, C. Entropic uncertainty principle, partition function and holographic principle derived from Liouville’s Theorem. Phys. Open 2021, 7, 100068. [Google Scholar] [CrossRef]
- Penrose, R. The Road to Reality: A Complete Guide to the Laws of the Universe; Jonathan Cape: London, UK, 2004. [Google Scholar]
- Courant, R.; Hilbert, D. Methods of Mathematical Physics; Interscience-Wiley: New York, NY, USA, 1962; p. 178. [Google Scholar]
- Parker, M.C.; Jeynes, C. A Relativistic Entropic Hamiltonian–Lagrangian Approach to the Entropy Production of Spiral Galaxies in Hyperbolic Spacetime. Universe 2021, 7, 325. [Google Scholar] [CrossRef]
- Visser, M. Conservative entropic forces. J. High Energy Phys. 2011, 2011, 140. [Google Scholar] [CrossRef]
- Knuth, K.H. Lattices and Their Consistent Quantification. Ann. Phys. 2019, 531, 1700370. [Google Scholar] [CrossRef]
- Jaeger, G. Information and the Reconstruction of Quantum Physics. Ann. Phys. 2018, 531, 1800097. [Google Scholar] [CrossRef]
- Jackson, J.D. Classical Electrodynamics; John Wiley: New York, NY, USA, 1962. [Google Scholar]
- Buus, J.; Amann, M.-C.; Blumenthal, D.J. Appendix E: Theory of General Reflectors. In Tunable Laser Diodes, 2nd ed.; Wiley-IEEE Press: Piscataway, NJ, USA, 2005. [Google Scholar]
- Corzine, S.W.; Yan, R.H.; Coldren, L.A. A tanh substitution technique for the analysis of abrupt and graded interface multilayer dielectric stacks. IEEE J. Quantum Electron. 1991, 27, 2086–2090. [Google Scholar] [CrossRef]
- Skilling, J.; Knuth, K.H. The Symmetrical Foundation of Measure, Probability, and Quantum Theories. Ann. Phys. 2018, 531, 1800057. [Google Scholar] [CrossRef]
- Barad, K. Meeting the Universe Halfway: Quantum Physics and the Entanglement of Matter and Meaning; Duke University Press: Durham, NC, USA, 2007. [Google Scholar]
- Polanyi, M. Personal Knowledge: Towards a Post-Critical Philosophy; University of Chicago Press: Chicago, IL, USA, 1958. [Google Scholar]
- Howson, C.; Urbach, P. Bayesian reasoning in science. Nature 1991, 350, 371–374. [Google Scholar] [CrossRef]
- Jaynes, E.T. Information Theory and Statistical Mechanics II. Phys. Rev. B 1957, 108, 171–190. [Google Scholar] [CrossRef]
- Parker, M.C.; Jeynes, C. A Maximum Entropy Resolution to the Wine/Water Paradox. Entropy 2023, 25, 1242. [Google Scholar] [CrossRef]
- Parker, M.C.; Jeynes, C. Ab initio thermodynamics calculation of beta decay rates. Ann. Phys. 2023, 535, 2300259. [Google Scholar] [CrossRef]
- Parker, M.C.; Jeynes, C. Relating a system’s Hamiltonian to its Entropy Production using a Complex-Time approach. Entropy 2023, 25, 629. [Google Scholar] [CrossRef]
- Zhang, Y.; Huang, F.; Deng, X.; Jiang, W. A New Total Uncertainty Measure from A Perspective of Maximum Entropy Requirement. Entropy 2021, 23, 1061. [Google Scholar] [CrossRef]
- Simmons, B.I.; Vizentin-Bugoni, J.; Maruyama, P.K.; Cotton, P.A.; Marín-Gómez, O.H.; Lara, C.; Rosero-Lasprilla, L.; Maglianesi, M.A.; Ortiz-Pulido, R.; Rocca, M.A.; et al. Abundance drives broad patterns of generalisation in plant–hummingbird pollination networks. Oikos 2019, 128, 1287–1295. [Google Scholar] [CrossRef]
- Harvey, N.J.A.; Kleinberg, R.; Nair, C.; Wu, Y. A “Chicken & Egg” Network Coding Problem. In Proceedings of the 2007 IEEE International Symposium on Information Theory, Nice, France, 24–29 June 2007. [Google Scholar] [CrossRef]
- Hofer-Szabó, G.; Rédei, M.; Szabó, L.E. The Principle of the Common Cause; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Ghalkhani, M.; Habibi, S. Review of the Li-Ion Battery, Thermal Management, and AI-Based Battery Management System for EV Application. Energies 2023, 16, 185. [Google Scholar] [CrossRef]
- CORDIS-EU. Circular Economy Innovations for Resilient, Competitive, and Sustainable Battery Technologies; CORDIS-EU: Luxembourg, 2024. [Google Scholar] [CrossRef]
- Lenz, G.; Eggleton, B.J.; Madsen, C.K.; Giles, C.R.; Nykolak, G. Optimal dispersion of optical filters for WDM systems. IEEE Photonics Technol. Lett. 1998, 10, 567–569. [Google Scholar] [CrossRef]
- Parker, M.C.; Walker, S.D.; Mears, R.J. An Isomorphic Fourier Transform Analysis of AWGs and FBGs. IEEE Photonics Technol. Lett. 2001, 13, 972–974. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Parker, M.C.; Jeynes, C.; Walker, S.D. A Hyperbolic Sum Rule for Probability: Solving Recursive (“Chicken and Egg”) Problems. Entropy 2025, 27, 352. https://doi.org/10.3390/e27040352
Parker MC, Jeynes C, Walker SD. A Hyperbolic Sum Rule for Probability: Solving Recursive (“Chicken and Egg”) Problems. Entropy. 2025; 27(4):352. https://doi.org/10.3390/e27040352
Chicago/Turabian StyleParker, Michael C., Chris Jeynes, and Stuart D. Walker. 2025. "A Hyperbolic Sum Rule for Probability: Solving Recursive (“Chicken and Egg”) Problems" Entropy 27, no. 4: 352. https://doi.org/10.3390/e27040352
APA StyleParker, M. C., Jeynes, C., & Walker, S. D. (2025). A Hyperbolic Sum Rule for Probability: Solving Recursive (“Chicken and Egg”) Problems. Entropy, 27(4), 352. https://doi.org/10.3390/e27040352