Quasi-Optimal Path Convergence-Aided Automorphism Ensemble Decoding of Reed–Muller Codes
Abstract
:1. Introduction
- We present a concise proof that PM convergence (PMC) arises in AE-SC decoding when multiple SC constituent decoders recover the codeword. Additionally, we analyze the occurrence of a zero path penalty (ZPP) in the PPM trajectory of SC decoding based on channel polarization theory. With PMC and ZPP establishing the theoretical foundation, we explore a QOPC phenomenon, which characterizes a PPM convergence feature in AE-SC decoding.
- Observing that a strong QOPC indicates high confidence in the involved paths being ultimately optimal, we propose a novel QOPC-aided ET technique that leverages sufficiently intense QOPC to reliably identify the best SC decoding path at runtime. The QOPC-aided ET method relies on implementation-friendly threshold comparisons with two simple parameters, which are appropriately optimized to balance the ETG and performance degradation. Once the QOPC-aided ET criterion is satisfied during the AE-SC decoding, only the identified path proceeds to complete decoding, while the others are terminated early.
- The block error rate (BLER) and the ETG of the proposed QOPC-aided AE-SC (QOPCA-AE-SC) decoder are extensively evaluated across multiple RM codes with various lengths and rates. The numerical results demonstrate that under fully parallel AE-SC decoding, the proposed QOPC-aided ET method incurred a minimal BLER loss and consistently outperformed the baseline PMT-aided ET method in terms of the ETG at a realistic target BLER of , with more pronounced improvements for higher-rate RM codes. Particularly, for a 256-length RM code with an information length of 219, the QOPC-aided ET method achieved a 47.4% reduction in the average complexity, while the PMT-aided ET method attained a minor complexity reduction of only 6.5%. Additionally, at a lower BLER that approached , the QOPC-aided ET method achieved a remarkable complexity reduction of 86.7% when applied to a partially parallel framework of AE-SC decoding.
2. Preliminaries
2.1. Reed–Muller Codes
2.2. Successive Cancellation Decoding
2.3. Automorphism Ensemble Decoding
2.4. PMT-Aided Early Termination for AE-SC Decoding
3. Quasi-Optimal Path Convergence-Aided AE-SC Decoding
3.1. Analysis of the Path Metric in the AE-SC Decoding
3.1.1. Final PM Diversity
3.1.2. Partial PM Trajectory
3.2. Quasi-Optimal Path Convergence-Aided Early Termination
Algorithm 1: QOPCA-AE-SC-M Decoding Algorithm |
3.3. Complexity and Performance of QOPCA-AE-SC Decoding
3.3.1. Complexity
3.3.2. Performance
4. Simulation Results and Discussions
4.1. Error-Correction Performance
4.2. Early Termination Gain
4.3. Strategies for Further ETG Enhancement
4.3.1. Fine-Grained Parameter Optimization
4.3.2. Partially Parallel Adaptive Decoding
4.4. Extensibility and Practical Relevance
- 1.
- Explore the QOPCA-AE-SC decoder implementation on application-specific integrated circuit (ASIC) or field-programmable gate array (FPGA) platforms to analyze its power consumption and scalability;
- 2.
- Evaluate the QOPCA-AE-SC decoding performance in real-time scenarios on a software-defined radio (SDR) platform and test it over diverse channel models, such as Rayleigh fading and Rician fading, to assess its adaptability over different real-time communication channels.
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Muller, D.E. Application of Boolean Algebra to Switching Circuit Design and to Error Detection. Trans. I.R.E. Prof. Group Electron. Comput. 1954, EC-3, 6–12. [Google Scholar] [CrossRef]
- Reed, I. A class of multiple-error-correcting codes and the decoding scheme. Trans. I.R.E. Prof. Group Electron. Comput. 1954, 4, 38–49. [Google Scholar] [CrossRef]
- Arikan, E. Channel Polarization: A Method for Constructing Capacity-Achieving Codes for Symmetric Binary-Input Memoryless Channels. IEEE Trans. Inf. Theory 2009, 55, 3051–3073. [Google Scholar] [CrossRef]
- Kudekar, S.; Kumar, S.; Mondelli, M.; Pfister, H.D.; Şaşoǧlu, E.; Urbanke, R.L. Reed-Muller Codes Achieve Capacity on Erasure Channels. IEEE Trans. Inf. Theory 2017, 63, 4298–4316. [Google Scholar] [CrossRef]
- Abbe, E.; Shpilka, A.; Wigderson, A. Reed-Muller Codes for Random Erasures and Errors. IEEE Trans. Inf. Theory 2015, 61, 5229–5252. [Google Scholar] [CrossRef]
- Reeves, G.; Pfister, H.D. Reed–Muller Codes on BMS Channels Achieve Vanishing Bit-Error Probability for all Rates Below Capacity. IEEE Trans. Inf. Theory 2024, 70, 920–949. [Google Scholar] [CrossRef]
- Yue, C.; Miloslavskaya, V.; Shirvanimoghaddam, M.; Vucetic, B.; Li, Y. Efficient Decoders for Short Block Length Codes in 6G URLLC. IEEE Commun. Mag. 2023, 61, 84–90. [Google Scholar] [CrossRef]
- Santi, E.; Hager, C.; Pfister, H.D. Decoding Reed-Muller Codes Using Minimum-Weight Parity Checks. In Proceedings of the 2018 IEEE International Symposium on Information Theory (ISIT), Vail, CO, USA, 17–22 June 2018; pp. 1296–1300. [Google Scholar]
- Ye, M.; Abbe, E. Recursive Projection-Aggregation Decoding of Reed-Muller Codes. IEEE Trans. Inf. Theory 2020, 66, 4948–4965. [Google Scholar] [CrossRef]
- Kamenev, M.; Kameneva, Y.; Kurmaev, O.; Maevskiy, A. A New Permutation Decoding Method for Reed-Muller Codes. In Proceedings of the 2019 IEEE International Symposium on Information Theory (ISIT), Paris, France, 7–12 July 2019; pp. 26–30. [Google Scholar]
- Geiselhart, M.; Elkelesh, A.; Ebada, M.; Cammerer, S.; Brink, S.T. Automorphism Ensemble Decoding of Reed-Muller Codes. IEEE Trans. Commun. 2021, 69, 6424–6438. [Google Scholar] [CrossRef]
- MacWilliams, F.J.; Sloane, N.J.A. The Theory of Error-Correcting Codes; North-Holland: Amsterdam, The Netherlands, 1977. [Google Scholar]
- Han, S.; Kim, B.; Chung, J.; Ha, J. Improved Automorphism Ensemble Decoder for Polar Codes. IEEE Commun. Lett. 2024, 28, 1750–1754. [Google Scholar] [CrossRef]
- Fang, Y.; Chen, J. Decoding Polar Codes for a Generalized Gilbert-Elliott Channel With Unknown Parameter. IEEE Trans. Commun. 2021, 69, 6455–6468. [Google Scholar] [CrossRef]
- Sun, H.; Viterbo, E.; Dai, B.; Liu, R. Fast Decoding of Polar Codes for Digital Broadcasting Services in 5G. IEEE Trans. Broadcast. 2024, 70, 731–738. [Google Scholar] [CrossRef]
- Tal, I.; Vardy, A. List Decoding of Polar Codes. IEEE Trans. Inf. Theory 2015, 61, 2213–2226. [Google Scholar] [CrossRef]
- Cui, H.; Niu, K.; Zhong, S. Intelligent Path-Selection-Aided Decoding of Polar Codes. Entropy 2023, 25, 200. [Google Scholar] [CrossRef]
- Pillet, C.; Sagitov, I.; Bioglio, V.; Giard, P. Shortened Polar Codes Under Automorphism Ensemble Decoding. IEEE Commun. Lett. 2024, 28, 773–777. [Google Scholar] [CrossRef]
- Balatsoukas-Stimming, A.; Parizi, M.B.; Burg, A. LLR-Based Successive Cancellation List Decoding of Polar Codes. IEEE Trans. Signal Process. 2015, 63, 5165–5179. [Google Scholar] [CrossRef]
- Condo, C. Input-Distribution-Aware Successive Cancellation List Decoding of Polar Codes. IEEE Commun. Lett. 2021, 25, 1510–1514. [Google Scholar] [CrossRef]
- Trifonov, P. Efficient Design and Decoding of Polar Codes. IEEE Trans. Commun. 2012, 60, 3221–3227. [Google Scholar] [CrossRef]
- Abbe, E.; Shpilka, A.; Ye, M. Reed-Muller Codes: Theory and Algorithms. IEEE Trans. Inf. Theory 2021, 67, 3251–3277. [Google Scholar] [CrossRef]
- Li, B.; Shen, H.; Tse, D. An Adaptive Successive Cancellation List Decoder for Polar Codes with Cyclic Redundancy Check. IEEE Commun. Lett. 2012, 16, 2044–2047. [Google Scholar] [CrossRef]
- Léonardon, M.; Cassagne, A.; Leroux, C.; Jégo, C.; Hamelin, L.P.; Savaria, Y. Fast and Flexible Software Polar List Decoders. J. Signal Process. Syst. 2019, 91, 937–952. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, H.; Li, R.; Wang, J.; Tong, W.; Yan, G.; Ma, Z. The Complete Affine Automorphism Group of Polar Codes. In Proceedings of the 2021 IEEE Global Communications Conference (GLOBECOM), Madrid, Spain, 7–11 December 2021; pp. 1–6. [Google Scholar]
- Bioglio, V.; Land, I.; Pillet, C. Group Properties of Polar Codes for Automorphism Ensemble Decoding. IEEE Trans. Inf. Theory 2023, 69, 3731–3747. [Google Scholar] [CrossRef]
- Alamdar-Yazdi, A.; Kschischang, F.R. A Simplified Successive-Cancellation Decoder for Polar Codes. IEEE Commun. Lett. 2011, 15, 1378–1380. [Google Scholar] [CrossRef]
Code | n | k | Rate | M | T (SNR [dB]) | ||
---|---|---|---|---|---|---|---|
(7,2) | 128 | 29 | 0.23 | 32 | 56 | 16 | () |
(7,3) | 128 | 64 | 0.50 | 32 | 41 | 16 | () |
(7,4) | 128 | 99 | 0.77 | 32 | 21 | 16 | () |
(8,3) | 256 | 93 | 0.36 | 256 | 98 | 32 | () |
(8,4) | 256 | 163 | 0.64 | 256 | 63 | 32 | () |
(8,5) | 256 | 219 | 0.86 | 256 | 28 | 32 | () |
Code | n | k | Rate | M | SNR [dB] | |
---|---|---|---|---|---|---|
(7,2) | 128 | 29 | 0.23 | 32 | 1.02 | |
(7,3) | 128 | 64 | 0.50 | 32 | 1.08 | |
(7,4) | 128 | 99 | 0.77 | 32 | 1.14 | |
(8,3) | 256 | 93 | 0.36 | 256 | 1.15 | |
(8,4) | 256 | 163 | 0.64 | 256 | 1.27 | |
(8,5) | 256 | 219 | 0.86 | 256 | 1.32 |
Code | n | k | Rate | M | SNR [dB] | () | () |
---|---|---|---|---|---|---|---|
(7,2) | 128 | 29 | 0.23 | 32 | 1.02 (98.0%) | 1.07 (93.5%) | |
(7,3) | 128 | 64 | 0.50 | 32 | 1.04 (96.2%) | 1.34 (74.6%) | |
(7,4) | 128 | 99 | 0.77 | 32 | 1.02 (98.0%) | 1.77 (56.5%) | |
(8,3) | 256 | 93 | 0.36 | 256 | 1.13 (88.5%) | 1.19 (84.0%) | |
(8,4) | 256 | 163 | 0.64 | 256 | 1.19 (84.0%) | 1.56 (64.1%) | |
(8,5) | 256 | 219 | 0.86 | 256 | 1.07 (93.5%) | 1.90 (52.6%) |
Code | n | k | Rate | M | |||||
---|---|---|---|---|---|---|---|---|---|
(7,2) | 128 | 29 | 0.23 | 32 | 56 | 896 | 879 | 443 | 1.92 |
(7,3) | 128 | 64 | 0.50 | 32 | 41 | 896 | 847 | 431 | 1.90 |
(7,4) | 128 | 99 | 0.77 | 32 | 21 | 896 | 767 | 399 | 1.86 |
(8,3) | 256 | 93 | 0.36 | 256 | 98 | 2048 | 1999 | 1007 | 1.98 |
(8,4) | 256 | 163 | 0.64 | 256 | 63 | 2048 | 1919 | 975 | 1.96 |
(8,5) | 256 | 219 | 0.86 | 256 | 28 | 2048 | 1727 | 895 | 1.92 |
Code | n | k | Rate | SNR [dB] | () | () |
---|---|---|---|---|---|---|
(8,3) | 256 | 93 | 0.36 | 1.34 (74.6%) | 3.08 (32.5%) | |
(8,4) | 256 | 163 | 0.64 | 1.83 (54.6%) | 5.36 (18.7%) | |
(8,5) | 256 | 219 | 0.86 | 1.92 (52.1%) | 7.51 (13.3%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, K.; Sun, H.; Liu, Y.; Liu, R. Quasi-Optimal Path Convergence-Aided Automorphism Ensemble Decoding of Reed–Muller Codes. Entropy 2025, 27, 424. https://doi.org/10.3390/e27040424
Tian K, Sun H, Liu Y, Liu R. Quasi-Optimal Path Convergence-Aided Automorphism Ensemble Decoding of Reed–Muller Codes. Entropy. 2025; 27(4):424. https://doi.org/10.3390/e27040424
Chicago/Turabian StyleTian, Kairui, He Sun, Yukai Liu, and Rongke Liu. 2025. "Quasi-Optimal Path Convergence-Aided Automorphism Ensemble Decoding of Reed–Muller Codes" Entropy 27, no. 4: 424. https://doi.org/10.3390/e27040424
APA StyleTian, K., Sun, H., Liu, Y., & Liu, R. (2025). Quasi-Optimal Path Convergence-Aided Automorphism Ensemble Decoding of Reed–Muller Codes. Entropy, 27(4), 424. https://doi.org/10.3390/e27040424