Integrating Dynamical Systems Modeling with Spatiotemporal scRNA-Seq Data Analysis
Abstract
:1. Introduction
2. Overview of the Data and Models
2.1. Spatiotemporal scRNA-Seq Data
2.1.1. Snapshot scRNA-Seq Data
2.1.2. Temporally and Spatially Resolved scRNA-Seq
2.2. Models for Cell-State Transitions
2.2.1. Discrete Dynamics: Markov Chain Model
2.2.2. Continuous Dynamics: From Trajectories to Population Dynamics
3. Dynamic Modeling of Single-Cell Transcriptomics
3.1. Snapshot Single-Cell RNA-Seq
3.1.1. Pseudotime Methods
3.1.2. Discrete Dynamics Modeling
3.1.3. Continuous Dynamics Modeling
Steady-State Assumption: Parameter Estimation in Velocyto [26]
Dynamic Inference: Parameter Estimation in scVelo [30]
- Initialization: Using steady-state estimation as the initial value for iteration.
- E-step: Assigning hidden latent time for each cell by projecting observations onto the current estimated trajectory .
- M-step: Updating via maximum likelihood estimation given current latent time assignments.
Function Class-Based Estimation
Latent State: VAE-Based Methods
Enhancing Velocity: Continuity-Based Methods
Estimating the Vector Field
Geometric Analysis of Vector Field
- The divergence represents the net flux generated or dissipated per unit time at each point in the vector field:
- The acceleration of a particle moving along the streamlines of the vector field can be directly computed from the Jacobian matrix:
- The curvature vector of the streamlines is defined as the derivative of the unit tangent vector with respect to time:
Transition Path Analysis
3.2. Temporally Resolved Single-Cell RNA-Seq
3.2.1. Discrete Temporal Dynamics Modeling
3.2.2. Continuous Temporal Dynamics Modeling
Neural ODE Solver
Conditional Flow Matching
Neural SDE Solver
Shrödinger Bridge Conditional Flow Matching
4. Dynamic Modeling of Spatial Transcriptomics
4.1. Snapshot Spatial Transcriptomics
4.1.1. Pseudotime Methods
4.1.2. Discrete Spatial Dynamics Modeling
4.1.3. Continuous Spatial Dynamics Modeling
4.2. Temporally Resolved Spatial Transcriptomics
4.2.1. Discrete Spatiotemporal Dynamics Modeling
4.2.2. Spatiotemporal Dynamics Modeling
5. Extensions, Challenges, and Future Directions
5.1. Bridging Discrete and Continuous Dynamics Modeling
- Cosine Kernel: ,
- Correlation Kernel: ,
- Inner Product Kernel: .
5.2. Modeling Cell–Cell Interaction Dynamically
5.3. Reconstructing Waddington Developmental Landscapes
5.4. Challenges and Further Directions
6. Discussion and Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
scRNA-seq | single-cell RNA sequencing |
SDE | Stochastic Differential Equation |
ODE | Ordinary Differential Equation |
PDE | Partial Differential Equation |
OT | Optimal Transport |
ICA | Independent Component Analysis |
PCA | Principle Component Analysis |
MST | Minimum Spanning Tree |
MCE | Markov Chain Entropy |
GPCCA | Generalized Perron Cluster Cluster Analysis |
EM | Expectation Maximum |
VAE | Variational Autoencoder |
RKHS | Reproducing Kernel Hilbert Space |
CNF | Continuous Normalizing Flow |
FM | Flow Matching |
CFM | Conditional Flow Matching |
SB | Schrödinger Bridge |
RUOT | Regularized Unbalanced Optimal Transport |
GWOT | Gromov–Wasserstein optimal transport |
FGWOT | Fused Gromov–Wasserstein optimal transport |
References
- Lei, J. Mathematical modeling of heterogeneous stem cell regeneration: From cell division to Waddington’s epigenetic landscape. arXiv 2023, arXiv:2309.08064. [Google Scholar]
- Hong, T.; Xing, J. Data-and theory-driven approaches for understanding paths of epithelial–mesenchymal transition. Genesis 2024, 62, e23591. [Google Scholar] [CrossRef] [PubMed]
- Xing, J. Reconstructing data-driven governing equations for cell phenotypic transitions: Integration of data science and systems biology. Phys. Biol. 2022, 19, 061001. [Google Scholar] [CrossRef] [PubMed]
- Schiebinger, G. Reconstructing developmental landscapes and trajectories from single-cell data. Curr. Opin. Syst. Biol. 2021, 27, 100351. [Google Scholar] [CrossRef]
- Heitz, M.; Ma, Y.; Kubal, S.; Schiebinger, G. Spatial Transcriptomics Brings New Challenges and Opportunities for Trajectory Inference. Annu. Rev. Biomed. Data Sci. 2024. [Google Scholar] [CrossRef]
- Waddington, C.H. The Strategy of the Genes; Routledge: London, UK, 2014. [Google Scholar]
- Moris, N.; Pina, C.; Arias, A.M. Transition states and cell fate decisions in epigenetic landscapes. Nat. Rev. Genet. 2016, 17, 693–703. [Google Scholar] [CrossRef]
- MacLean, A.L.; Hong, T.; Nie, Q. Exploring intermediate cell states through the lens of single cells. Curr. Opin. Syst. Biol. 2018, 9, 32–41. [Google Scholar] [CrossRef]
- Ziegenhain, C.; Vieth, B.; Parekh, S.; Reinius, B.; Guillaumet-Adkins, A.; Smets, M.; Leonhardt, H.; Heyn, H.; Hellmann, I.; Enard, W. Comparative analysis of single-cell RNA sequencing methods. Mol. Cell 2017, 65, 631–643. [Google Scholar] [CrossRef]
- Tang, F.; Barbacioru, C.; Wang, Y.; Nordman, E.; Lee, C.; Xu, N.; Wang, X.; Bodeau, J.; Tuch, B.B.; Siddiqui, A.; et al. mRNA-Seq whole-transcriptome analysis of a single cell. Nat. Methods 2009, 6, 377–382. [Google Scholar] [CrossRef]
- Stark, R.; Grzelak, M.; Hadfield, J. RNA sequencing: The teenage years. Nat. Rev. Genet. 2019, 20, 631–656. [Google Scholar] [CrossRef]
- Ding, J.; Sharon, N.; Bar-Joseph, Z. Temporal modelling using single-cell transcriptomics. Nat. Rev. Genet. 2022, 23, 355–368. [Google Scholar] [CrossRef] [PubMed]
- Bunne, C.; Schiebinger, G.; Krause, A.; Regev, A.; Cuturi, M. Optimal transport for single-cell and spatial omics. Nat. Rev. Methods Prim. 2024, 4, 58. [Google Scholar] [CrossRef]
- Ståhl, P.L.; Salmén, F.; Vickovic, S.; Lundmark, A.; Navarro, J.F.; Magnusson, J.; Giacomello, S.; Asp, M.; Westholm, J.O.; Huss, M.; et al. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science 2016, 353, 78–82. [Google Scholar] [CrossRef] [PubMed]
- Rodriques, S.G.; Stickels, R.R.; Goeva, A.; Martin, C.A.; Murray, E.; Vanderburg, C.R.; Welch, J.; Chen, L.M.; Chen, F.; Macosko, E.Z. Slide-seq: A scalable technology for measuring genome-wide expression at high spatial resolution. Science 2019, 363, 1463–1467. [Google Scholar] [CrossRef]
- Stickels, R.R.; Murray, E.; Kumar, P.; Li, J.; Marshall, J.L.; Di Bella, D.J.; Arlotta, P.; Macosko, E.Z.; Chen, F. Highly sensitive spatial transcriptomics at near-cellular resolution with Slide-seqV2. Nat. Biotechnol. 2021, 39, 313–319. [Google Scholar] [CrossRef]
- Chen, A.; Liao, S.; Cheng, M.; Ma, K.; Wu, L.; Lai, Y.; Qiu, X.; Yang, J.; Xu, J.; Hao, S.; et al. Spatiotemporal transcriptomic atlas of mouse organogenesis using DNA nanoball-patterned arrays. Cell 2022, 185, 1777–1792. [Google Scholar] [CrossRef]
- Oliveira, M.F.; Romero, J.P.; Chung, M.; Williams, S.; Gottscho, A.D.; Gupta, A.; Pilipauskas, S.E.; Mohabbat, S.; Raman, N.; Sukovich, D.; et al. Characterization of immune cell populations in the tumor microenvironment of colorectal cancer using high definition spatial profiling. bioRxiv 2024. [Google Scholar] [CrossRef]
- Moffitt, J.R.; Bambah-Mukku, D.; Eichhorn, S.W.; Vaughn, E.; Shekhar, K.; Perez, J.D.; Rubinstein, N.D.; Hao, J.; Regev, A.; Dulac, C.; et al. Molecular, spatial, and functional single-cell profiling of the hypothalamic preoptic region. Science 2018, 362, eaau5324. [Google Scholar] [CrossRef]
- Eng, C.H.L.; Lawson, M.; Zhu, Q.; Dries, R.; Koulena, N.; Takei, Y.; Yun, J.; Cronin, C.; Karp, C.; Yuan, G.C.; et al. Transcriptome-scale super-resolved imaging in tissues by RNA seqFISH+. Nature 2019, 568, 235–239. [Google Scholar] [CrossRef]
- Wang, X.; Allen, W.E.; Wright, M.A.; Sylwestrak, E.L.; Samusik, N.; Vesuna, S.; Evans, K.; Liu, C.; Ramakrishnan, C.; Liu, J.; et al. Three-dimensional intact-tissue sequencing of single-cell transcriptional states. Science 2018, 361, eaat5691. [Google Scholar]
- Liu, L.; Chen, A.; Li, Y.; Mulder, J.; Heyn, H.; Xu, X. Spatiotemporal omics for biology and medicine. Cell 2024, 187, 4488–4519. [Google Scholar] [CrossRef] [PubMed]
- Qiu, X.; Mao, Q.; Tang, Y.; Wang, L.; Chawla, R.; Pliner, H.A.; Trapnell, C. Reversed graph embedding resolves complex single-cell trajectories. Nat. Methods 2017, 14, 979–982. [Google Scholar] [CrossRef] [PubMed]
- Cao, J.; Spielmann, M.; Qiu, X.; Huang, X.; Ibrahim, D.M.; Hill, A.J.; Zhang, F.; Mundlos, S.; Christiansen, L.; Steemers, F.J.; et al. The single-cell transcriptional landscape of mammalian organogenesis. Nature 2019, 566, 496–502. [Google Scholar] [CrossRef]
- Street, K.; Risso, D.; Fletcher, R.B.; Das, D.; Ngai, J.; Yosef, N.; Purdom, E.; Dudoit, S. Slingshot: Cell lineage and pseudotime inference for single-cell transcriptomics. BMC Genom. 2018, 19, 1–16. [Google Scholar] [CrossRef]
- La Manno, G.; Soldatov, R.; Zeisel, A.; Braun, E.; Hochgerner, H.; Petukhov, V.; Lidschreiber, K.; Kastriti, M.E.; Lönnerberg, P.; Furlan, A.; et al. RNA velocity of single cells. Nature 2018, 560, 494–498. [Google Scholar] [CrossRef]
- Bergen, V.; Soldatov, R.A.; Kharchenko, P.V.; Theis, F.J. RNA velocity—current challenges and future perspectives. Mol. Syst. Biol. 2021, 17, e10282. [Google Scholar] [CrossRef]
- Wang, K.; Hou, L.; Wang, X.; Zhai, X.; Lu, Z.; Zi, Z.; Zhai, W.; He, X.; Curtis, C.; Zhou, D.; et al. PhyloVelo enhances transcriptomic velocity field mapping using monotonically expressed genes. Nat. Biotechnol. 2024, 42, 778–789. [Google Scholar] [CrossRef]
- Liu, Y.; Huang, K.; Chen, W. Resolving cellular dynamics using single-cell temporal transcriptomics. Curr. Opin. Biotechnol. 2024, 85, 103060. [Google Scholar] [CrossRef]
- Bergen, V.; Lange, M.; Peidli, S.; Wolf, F.A.; Theis, F.J. Generalizing RNA velocity to transient cell states through dynamical modeling. Nat. Biotechnol. 2020, 38, 1408–1414. [Google Scholar] [CrossRef]
- Ho, J.; Jain, A.; Abbeel, P. Denoising diffusion probabilistic models. In Advances in Neural Information Processing Systems; The MIT Press: Cambridge, MA, USA, 2020; Volume 33, pp. 6840–6851. [Google Scholar]
- Sohl-Dickstein, J.; Weiss, E.; Maheswaranathan, N.; Ganguli, S. Deep unsupervised learning using nonequilibrium thermodynamics. In Proceedings of the International Conference on Machine Learning, PMLR, Lille, France, 6–11 July 2015; pp. 2256–2265. [Google Scholar]
- Song, Y.; Sohl-Dickstein, J.; Kingma, D.P.; Kumar, A.; Ermon, S.; Poole, B. Score-Based Generative Modeling through Stochastic Differential Equations. In Proceedings of the International Conference on Learning Representations, Vienna, Austria, 4 May 2021. [Google Scholar]
- Ren, T.; Zhang, Z.; Li, Z.; Jiang, J.; Qin, S.; Li, G.; Li, Y.; Zheng, Y.; Li, X.; Zhan, M.; et al. Zeroth-order Informed Fine-Tuning for Diffusion Model: A Recursive Likelihood Ratio Optimizer. arXiv 2025, arXiv:2502.00639. [Google Scholar]
- Schiebinger, G.; Shu, J.; Tabaka, M.; Cleary, B.; Subramanian, V.; Solomon, A.; Gould, J.; Liu, S.; Lin, S.; Berube, P.; et al. Optimal-transport analysis of single-cell gene expression identifies developmental trajectories in reprogramming. Cell 2019, 176, 928–943. [Google Scholar] [CrossRef] [PubMed]
- Klein, D.; Palla, G.; Lange, M.; Klein, M.; Piran, Z.; Gander, M.; Meng-Papaxanthos, L.; Sterr, M.; Saber, L.; Jing, C.; et al. Mapping cells through time and space with moscot. Nature 2025, 638, 1065–1075. [Google Scholar] [CrossRef] [PubMed]
- Lipman, Y.; Chen, R.T.Q.; Ben-Hamu, H.; Nickel, M.; Le, M. Flow Matching for Generative Modeling. In Proceedings of the Eleventh International Conference on Learning Representations, Kigali, Rwanda, 1–5 May 2023. [Google Scholar]
- Tong, A.; FATRAS, K.; Malkin, N.; Huguet, G.; Zhang, Y.; Rector-Brooks, J.; Wolf, G.; Bengio, Y. Improving and generalizing flow-based generative models with minibatch optimal transport. Trans. Mach. Learn. Res. 2024. Available online: https://openreview.net/forum?id=CD9Snc73AW (accessed on 18 April 2025).
- Gentil, I.; Léonard, C.; Ripani, L. About the analogy between optimal transport and minimal entropy. Ann. Fac. Sci. Toulouse Math. 2017, 26, 569–600. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, T.; Zhou, P. Learning stochastic dynamics from snapshots through regularized unbalanced optimal transport. In Proceedings of the Thirteenth International Conference on Learning Representations, Singapore, 24–28 April 2025. [Google Scholar]
- Peng, Q.; Zhou, P.; Li, T. stVCR: Reconstructing spatio-temporal dynamics of cell development using optimal transport. bioRxiv 2024. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, Q.; Qin, Q.; Trasanidis, N.; Vinyard, M.; Chen, H.; Pinello, L. Current progress and potential opportunities to infer single-cell developmental trajectory and cell fate. Curr. Opin. Syst. Biol. 2021, 26, 1–11. [Google Scholar] [CrossRef]
- Saelens, W.; Cannoodt, R.; Todorov, H.; Saeys, Y. A comparison of single-cell trajectory inference methods. Nat. Biotechnol. 2019, 37, 547–554. [Google Scholar] [CrossRef]
- Li, T.; Shi, J.; Wu, Y.; Zhou, P. On the mathematics of RNA velocity I: Theoretical analysis. bioRxiv 2020. [Google Scholar] [CrossRef]
- Jiang, Q.; Wan, L. Dynamic modeling, optimization, and deep learning for high-dimensional complex biological data. Sci. Sin. Math. 2025, 55, 1–14. [Google Scholar]
- Deconinck, L.; Cannoodt, R.; Saelens, W.; Deplancke, B.; Saeys, Y. Recent advances in trajectory inference from single-cell omics data. Curr. Opin. Syst. Biol. 2021, 27, 100344. [Google Scholar] [CrossRef]
- Gandrillon, O.; Gaillard, M.; Espinasse, T.; Garnier, N.B.; Dussiau, C.; Kosmider, O.; Sujobert, P. Entropy as a measure of variability and stemness in single-cell transcriptomics. Curr. Opin. Syst. Biol. 2021, 27, 100348. [Google Scholar] [CrossRef]
- Grün, D.; Muraro, M.J.; Boisset, J.C.; Wiebrands, K.; Lyubimova, A.; Dharmadhikari, G.; van den Born, M.; Van Es, J.; Jansen, E.; Clevers, H.; et al. De novo prediction of stem cell identity using single-cell transcriptome data. Cell Stem Cell 2016, 19, 266–277. [Google Scholar] [CrossRef] [PubMed]
- Guo, M.; Bao, E.L.; Wagner, M.; Whitsett, J.A.; Xu, Y. SLICE: Determining cell differentiation and lineage based on single cell entropy. Nucleic Acids Res. 2017, 45, e54. [Google Scholar] [CrossRef]
- Teschendorff, A.E.; Enver, T. Single-cell entropy for accurate estimation of differentiation potency from a cell’s transcriptome. Nat. Commun. 2017, 8, 15599. [Google Scholar] [CrossRef]
- Shi, J.; Teschendorff, A.E.; Chen, W.; Chen, L.; Li, T. Quantifying Waddington’s epigenetic landscape: A comparison of single-cell potency measures. Briefings Bioinform. 2020, 21, 248–261. [Google Scholar] [CrossRef]
- Jin, S.; MacLean, A.L.; Peng, T.; Nie, Q. scEpath: Energy landscape-based inference of transition probabilities and cellular trajectories from single-cell transcriptomic data. Bioinformatics 2018, 34, 2077–2086. [Google Scholar] [CrossRef]
- Liu, J.; Song, Y.; Lei, J. Single-cell entropy to quantify the cellular order parameter from single-cell RNA-seq data. Biophys. Rev. Lett. 2020, 15, 35–49. [Google Scholar] [CrossRef]
- Haghverdi, L.; Büttner, M.; Wolf, F.A.; Buettner, F.; Theis, F.J. Diffusion pseudotime robustly reconstructs lineage branching. Nat. Methods 2016, 13, 845–848. [Google Scholar] [CrossRef]
- Wolf, F.A.; Hamey, F.K.; Plass, M.; Solana, J.; Dahlin, J.S.; Göttgens, B.; Rajewsky, N.; Simon, L.; Theis, F.J. PAGA: Graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome Biol. 2019, 20, 59. [Google Scholar] [CrossRef]
- Coifman, R.R.; Lafon, S. Diffusion maps. Appl. Comput. Harmon. Anal. 2006, 21, 5–30. [Google Scholar] [CrossRef]
- Setty, M.; Kiseliovas, V.; Levine, J.; Gayoso, A.; Mazutis, L.; Pe’Er, D. Characterization of cell fate probabilities in single-cell data with Palantir. Nat. Biotechnol. 2019, 37, 451–460. [Google Scholar] [CrossRef] [PubMed]
- Stassen, S.V.; Yip, G.G.; Wong, K.K.; Ho, J.W.; Tsia, K.K. Generalized and scalable trajectory inference in single-cell omics data with VIA. Nat. Commun. 2021, 12, 5528. [Google Scholar] [CrossRef] [PubMed]
- Pandey, K.; Zafar, H. Inference of cell state transitions and cell fate plasticity from single-cell with MARGARET. Nucleic Acids Res. 2022, 50, e86. [Google Scholar] [CrossRef] [PubMed]
- Weinreb, C.; Wolock, S.; Tusi, B.K.; Socolovsky, M.; Klein, A.M. Fundamental limits on dynamic inference from single-cell snapshots. Proc. Natl. Acad. Sci. USA 2018, 115, E2467–E2476. [Google Scholar] [CrossRef]
- Zhou, P.; Wang, S.; Li, T.; Nie, Q. Dissecting transition cells from single-cell transcriptome data through multiscale stochastic dynamics. Nat. Commun. 2021, 12, 5609. [Google Scholar] [CrossRef]
- Lange, M.; Bergen, V.; Klein, M.; Setty, M.; Reuter, B.; Bakhti, M.; Lickert, H.; Ansari, M.; Schniering, J.; Schiller, H.B.; et al. CellRank for directed single-cell fate mapping. Nat. Methods 2022, 19, 159–170. [Google Scholar] [CrossRef]
- Weiler, P.; Lange, M.; Klein, M.; Pe’er, D.; Theis, F. CellRank 2: Unified fate mapping in multiview single-cell data. Nat. Methods 2024, 21, 1196–1205. [Google Scholar] [CrossRef]
- Zhou, P.; Li, T. Construction of the landscape for multi-stable systems: Potential landscape, quasi-potential, A-type integral and beyond. J. Chem. Phys. 2016, 144, 094109. [Google Scholar] [CrossRef]
- Vanden-Eijnden, E. Transition-path theory and path-finding algorithms for the study of rare events. Annu. Rev. Phys. Chem. 2010, 61, 391–420. [Google Scholar]
- Reuter, B.; Fackeldey, K.; Weber, M. Generalized Markov modeling of nonreversible molecular kinetics. J. Chem. Phys. 2019, 150, 174103. [Google Scholar] [CrossRef]
- Gao, M.; Qiao, C.; Huang, Y. UniTVelo: Temporally unified RNA velocity reinforces single-cell trajectory inference. Nat. Commun. 2022, 13, 6586. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Pan, X.; Yuan, Y.; Shen, H.B. TFvelo: Gene regulation inspired RNA velocity estimation. Nat. Commun. 2024, 15, 1387. [Google Scholar] [CrossRef] [PubMed]
- Oller-Moreno, S.; Kloiber, K.; Machart, P.; Bonn, S. Algorithmic advances in machine learning for single-cell expression analysis. Curr. Opin. Syst. Biol. 2021, 25, 27–33. [Google Scholar] [CrossRef]
- Raimundo, F.; Meng-Papaxanthos, L.; Vallot, C.; Vert, J.P. Machine learning for single-cell genomics data analysis. Curr. Opin. Syst. Biol. 2021, 26, 64–71. [Google Scholar] [CrossRef]
- Gu, Y.; Blaauw, D.; Welch, J.D. Bayesian inference of rna velocity from multi-lineage single-cell data. bioRxiv 2022. [Google Scholar] [CrossRef]
- Kingma, D.P.; Welling, M. Auto-encoding variational bayes. arXiv 2013, arXiv:1312.6114. [Google Scholar]
- Qiao, C.; Huang, Y. Representation learning of RNA velocity reveals robust cell transitions. Proc. Natl. Acad. Sci. USA 2021, 118, e2105859118. [Google Scholar] [CrossRef]
- Farrell, S.; Mani, M.; Goyal, S. Inferring single-cell transcriptomic dynamics with structured latent gene expression dynamics. Cell Rep. Methods 2023, 3, 100581. [Google Scholar] [CrossRef]
- Gayoso, A.; Weiler, P.; Lotfollahi, M.; Klein, D.; Hong, J.; Streets, A.; Theis, F.J.; Yosef, N. Deep generative modeling of transcriptional dynamics for RNA velocity analysis in single cells. Nat. Methods 2024, 21, 50–59. [Google Scholar] [CrossRef]
- Gu, Y.; Blaauw, D.T.; Welch, J. Variational mixtures of ODEs for inferring cellular gene expression dynamics. In Proceedings of the International Conference on Machine Learning. PMLR, Baltimore, MD, USA, 17–23 July 2022; pp. 7887–7901. [Google Scholar]
- Cui, H.; Maan, H.; Vladoiu, M.C.; Zhang, J.; Taylor, M.D.; Wang, B. DeepVelo: Deep learning extends RNA velocity to multi-lineage systems with cell-specific kinetics. Genome Biol. 2024, 25, 27. [Google Scholar] [CrossRef]
- Li, S.; Zhang, P.; Chen, W.; Ye, L.; Brannan, K.W.; Le, N.T.; Abe, J.i.; Cooke, J.P.; Wang, G. A relay velocity model infers cell-dependent RNA velocity. Nat. Biotechnol. 2024, 42, 99–108. [Google Scholar] [CrossRef]
- Qiu, X.; Zhang, Y.; Martin-Rufino, J.D.; Weng, C.; Hosseinzadeh, S.; Yang, D.; Pogson, A.N.; Hein, M.Y.; Min, K.H.J.; Wang, L.; et al. Mapping transcriptomic vector fields of single cells. Cell 2022, 185, 690–711. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; King, W.C.; Hwang, A.; Gerstein, M.; Zhang, J. DeepVelo: Single-cell transcriptomic deep velocity field learning with neural ordinary differential equations. Sci. Adv. 2022, 8, eabq3745. [Google Scholar] [CrossRef] [PubMed]
- Sha, Y.; Qiu, Y.; Zhou, P.; Nie, Q. Reconstructing growth and dynamic trajectories from single-cell transcriptomics data. Nat. Mach. Intell. 2024, 6, 25–39. [Google Scholar] [CrossRef] [PubMed]
- Lavenant, H.; Zhang, S.; Kim, Y.H.; Schiebinger, G. Toward a mathematical theory of trajectory inference. Ann. Appl. Probab. 2024, 34, 428–500. [Google Scholar] [CrossRef]
- Jiang, Q.; Zhang, S.; Wan, L. Dynamic inference of cell developmental complex energy landscape from time series single-cell transcriptomic data. PLoS Comput. Biol. 2022, 18, e1009821. [Google Scholar] [CrossRef]
- Jiang, Q.; Wan, L. A physics-informed neural SDE network for learning cellular dynamics from time-series scRNA-seq data. Bioinformatics 2024, 40, ii120–ii127. [Google Scholar] [CrossRef]
- Bunne, C.; Stark, S.G.; Gut, G.; Del Castillo, J.S.; Levesque, M.; Lehmann, K.V.; Pelkmans, L.; Krause, A.; Rätsch, G. Learning single-cell perturbation responses using neural optimal transport. Nat. Methods 2023, 20, 1759–1768. [Google Scholar] [CrossRef]
- Tong, A.; Kuchroo, M.; Gupta, S.; Venkat, A.; San Juan, B.P.; Rangel, L.; Zhu, B.; Lock, J.G.; Chaffer, C.L.; Krishnaswamy, S. Learning transcriptional and regulatory dynamics driving cancer cell plasticity using neural ODE-based optimal transport. bioRxiv 2023. [Google Scholar] [CrossRef]
- Zhang, S.; Afanassiev, A.; Greenstreet, L.; Matsumoto, T.; Schiebinger, G. Optimal transport analysis reveals trajectories in steady-state systems. PLoS Comput. Biol. 2021, 17, e1009466. [Google Scholar] [CrossRef]
- Maddu, S.; Chardès, V.; Shelley, M. Inferring biological processes with intrinsic noise from cross-sectional data. arXiv 2024, arXiv:2410.07501. [Google Scholar]
- Eyring, L.; Klein, D.; Uscidda, T.; Palla, G.; Kilbertus, N.; Akata, Z.; Theis, F.J. Unbalancedness in Neural Monge Maps Improves Unpaired Domain Translation. In Proceedings of the Twelfth International Conference on Learning Representations, Vienna, Austria, 7–11 May 2024. [Google Scholar]
- Zhang, J.; Larschan, E.; Bigness, J.; Singh, R. scNODE: Generative model for temporal single cell transcriptomic data prediction. Bioinformatics 2024, 40, ii146–ii154. [Google Scholar] [CrossRef] [PubMed]
- Yeo, G.H.T.; Saksena, S.D.; Gifford, D.K. Generative modeling of single-cell time series with PRESCIENT enables prediction of cell trajectories with interventions. Nat. Commun. 2021, 12, 3222. [Google Scholar] [CrossRef] [PubMed]
- Flamary, R.; Courty, N.; Gramfort, A.; Alaya, M.Z.; Boisbunon, A.; Chambon, S.; Chapel, L.; Corenflos, A.; Fatras, K.; Fournier, N.; et al. POT: Python Optimal Transport. J. Mach. Learn. Res. 2021, 22, 1–8. [Google Scholar]
- Peyré, G.; Cuturi, M. Computational optimal transport: With applications to data science. Found. Trends® Mach. Learn. 2019, 11, 355–607. [Google Scholar] [CrossRef]
- Benamou, J.D.; Brenier, Y. A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem. Numer. Math. 2000, 84, 375–393. [Google Scholar] [CrossRef]
- Tong, A.; Huang, J.; Wolf, G.; Van Dijk, D.; Krishnaswamy, S. Trajectorynet: A dynamic optimal transport network for modeling cellular dynamics. In Proceedings of the International Conference on Machine Learning. PMLR, Virtual, 13–18 July 2020; pp. 9526–9536. [Google Scholar]
- Huguet, G.; Magruder, D.S.; Tong, A.; Fasina, O.; Kuchroo, M.; Wolf, G.; Krishnaswamy, S. Manifold interpolating optimal-transport flows for trajectory inference. In Advances in Neural Information Processing Systems; The MIT Press: Cambridge, MA, USA, 2022; Volume 35, pp. 29705–29718. [Google Scholar]
- Ruthotto, L.; Osher, S.J.; Li, W.; Nurbekyan, L.; Fung, S.W. A machine learning framework for solving high-dimensional mean field game and mean field control problems. Proc. Natl. Acad. Sci. USA 2020, 117, 9183–9193. [Google Scholar] [CrossRef]
- Liu, S.; Ma, S.; Chen, Y.; Zha, H.; Zhou, H. Learning high dimensional Wasserstein geodesics. arXiv 2021, arXiv:2102.02992. [Google Scholar]
- Cheng, Q.; Liu, Q.; Chen, W.; Shen, J. A new flow dynamic approach for Wasserstein gradient flows. arXiv 2024, arXiv:2406.14870. [Google Scholar] [CrossRef]
- Wan, W.; Zhang, Y.; Bao, C.; Dong, B.; Shi, Z. A scalable deep learning approach for solving high-dimensional dynamic optimal transport. SIAM J. Sci. Comput. 2023, 45, B544–B563. [Google Scholar] [CrossRef]
- Pooladian, A.A.; Domingo-Enrich, C.; Chen, R.T.Q.; Amos, B. Neural Optimal Transport with Lagrangian Costs. In Proceedings of the 40th Conference on Uncertainty in Artificial Intelligence, Barcelona, Spain, 15–19 July 2024. [Google Scholar]
- Klein, D.; Uscidda, T.; Theis, F.; Cuturi, M. Generative Entropic Neural Optimal Transport To Map Within and Across Spaces. arXiv 2023, arXiv:2310.09254. [Google Scholar]
- Albergo, M.S.; Vanden-Eijnden, E. Building Normalizing Flows with Stochastic Interpolants. In Proceedings of the Eleventh International Conference on Learning Representations, Kigali, Rwanda, 1–5 May 2023. [Google Scholar]
- Liu, X.; Gong, C.; Liu, Q. Flow Straight and Fast: Learning to Generate and Transfer Data with Rectified Flow. In Proceedings of the Eleventh International Conference on Learning Representations, Kigali, Rwanda, 1–5 May 2023. [Google Scholar]
- Jiao, Y.; Lai, Y.; Wang, Y.; Yan, B. Convergence Analysis of Flow Matching in Latent Space with Transformers. arXiv 2024, arXiv:2404.02538. [Google Scholar]
- Gao, Y.; Huang, J.; Jiao, Y.; Zheng, S. Convergence of Continuous Normalizing Flows for Learning Probability Distributions. arXiv 2024, arXiv:2404.00551. [Google Scholar]
- Liu, S.; Li, W.; Zha, H.; Zhou, H. Neural Parametric Fokker–Planck Equation. SIAM J. Numer. Anal. 2022, 60, 1385–1449. [Google Scholar] [CrossRef]
- Wu, H.; Liu, S.; Ye, X.; Zhou, H. Parameterized wasserstein hamiltonian flow. arXiv 2023, arXiv:2306.00191. [Google Scholar] [CrossRef]
- Jin, Y.; Liu, S.; Wu, H.; Ye, X.; Zhou, H. Parameterized Wasserstein Gradient Flow. arXiv 2024, arXiv:2404.19133. [Google Scholar] [CrossRef]
- Chow, S.N.; Li, W.; Zhou, H. Wasserstein hamiltonian flows. J. Differ. Equ. 2020, 268, 1205–1219. [Google Scholar] [CrossRef]
- Cheng, X.; Lu, J.; Tan, Y.; Xie, Y. Convergence of flow-based generative models via proximal gradient descent in Wasserstein space. IEEE Trans. Inf. Theory 2024, 70, 8087–8106. [Google Scholar] [CrossRef]
- Zhou, P.; Gao, X.; Li, X.; Li, L.; Niu, C.; Ouyang, Q.; Lou, H.; Li, T.; Li, F. Stochasticity triggers activation of the S-phase checkpoint pathway in budding yeast. Phys. Rev. X 2021, 11, 011004. [Google Scholar] [CrossRef]
- Elowitz, M.B.; Levine, A.J.; Siggia, E.D.; Swain, P.S. Stochastic gene expression in a single cell. Science 2002, 297, 1183–1186. [Google Scholar] [CrossRef]
- Léonard, C. A survey of the Schrödinger problem and some of its connections with optimal transport. Discret. Contin. Dyn. Syst.-Ser. A 2014, 34, 1533–1574. [Google Scholar] [CrossRef]
- Pariset, M.; Hsieh, Y.P.; Bunne, C.; Krause, A.; Bortoli, V.D. Unbalanced Diffusion Schrödinger Bridge. In Proceedings of the ICML Workshop on New Frontiers in Learning, Control, and Dynamical Systems, Honolulu, HI, USA, 23–29 July 2023. [Google Scholar]
- Ventre, E.; Forrow, A.; Gadhiwala, N.; Chakraborty, P.; Angel, O.; Schiebinger, G. Trajectory inference for a branching SDE model of cell differentiation. arXiv 2023, arXiv:2307.07687. [Google Scholar]
- Chizat, L.; Zhang, S.; Heitz, M.; Schiebinger, G. Trajectory inference via mean-field langevin in path space. In Advances in Neural Information Processing Systems; The MIT Press: Cambridge, MA, USA, 2022; Volume 35, pp. 16731–16742. [Google Scholar]
- Shi, Y.; De Bortoli, V.; Campbell, A.; Doucet, A. Diffusion Schrödinger bridge matching. In Advances in Neural Information Processing Systems; The MIT Press: Cambridge, MA, USA, 2024; Volume 36. [Google Scholar]
- De Bortoli, V.; Thornton, J.; Heng, J.; Doucet, A. Diffusion schrödinger bridge with applications to score-based generative modeling. In Advances in Neural Information Processing Systems; The MIT Press: Cambridge, MA, USA, 2021; Volume 34, pp. 17695–17709. [Google Scholar]
- Pooladian, A.A.; Niles-Weed, J. Plug-in estimation of Schrödinger bridges. arXiv 2024, arXiv:2408.11686. [Google Scholar]
- Liu, G.H.; Chen, T.; So, O.; Theodorou, E. Deep Generalized Schrödinger Bridge. In Advances in Neural Information Processing Systems; The MIT Press: Cambridge, MA, USA, 2022; Volume 35, pp. 9374–9388. [Google Scholar]
- Gu, A.; Chien, E.; Greenewald, K. Partially Observed Trajectory Inference using Optimal Transport and a Dynamics Prior. arXiv 2024, arXiv:2406.07475. [Google Scholar]
- Koshizuka, T.; Sato, I. Neural Lagrangian Schrödinger Bridge: Diffusion Modeling for Population Dynamics. In Proceedings of the Eleventh International Conference on Learning Representations, Kigali, Rwanda, 1–5 May 2023. [Google Scholar]
- Neklyudov, K.; Brekelmans, R.; Severo, D.; Makhzani, A. Action matching: Learning stochastic dynamics from samples. In Proceedings of the International Conference on Machine Learning. PMLR, Honolulu, HI, USA, 23–29 July 2023; pp. 25858–25889. [Google Scholar]
- Neklyudov, K.; Brekelmans, R.; Tong, A.; Atanackovic, L.; Liu, Q.; Makhzani, A. A Computational Framework for Solving Wasserstein Lagrangian Flows. In Proceedings of the Forty-first International Conference on Machine Learning, Vienna, Austria, 21–27 July 2024. [Google Scholar]
- Zhang, P.; Gao, T.; Guo, J.; Duan, J. Action Functional as Early Warning Indicator in the Space of Probability Measures. arXiv 2024, arXiv:2403.10405. [Google Scholar]
- Bunne, C.; Hsieh, Y.P.; Cuturi, M.; Krause, A. The schrödinger bridge between gaussian measures has a closed form. In Proceedings of the International Conference on Artificial Intelligence and Statistics, PMLR, Valencia, Spain, 25–27 April 2023; pp. 5802–5833. [Google Scholar]
- Chen, T.; Liu, G.H.; Theodorou, E. Likelihood Training of Schrödinger Bridge using Forward-Backward SDEs Theory. In Proceedings of the International Conference on Learning Representations, Online, 25–29 April 2022. [Google Scholar]
- Albergo, M.S.; Boffi, N.M.; Vanden-Eijnden, E. Stochastic interpolants: A unifying framework for flows and diffusions. arXiv 2023, arXiv:2303.08797. [Google Scholar]
- Wang, G.; Jiao, Y.; Xu, Q.; Wang, Y.; Yang, C. Deep generative learning via schrödinger bridge. In Proceedings of the International Conference on Machine Learning, PMLR, Virtual, 18–24 July 2021; pp. 10794–10804. [Google Scholar]
- Jiao, Y.; Kang, L.; Lin, H.; Liu, J.; Zuo, H. Latent Schrödinger Bridge Diffusion Model for Generative Learning. arXiv 2024, arXiv:2404.13309. [Google Scholar]
- Zhou, L.; Lou, A.; Khanna, S.; Ermon, S. Denoising Diffusion Bridge Models. In Proceedings of the Twelfth International Conference on Learning Representations, Vienna, Austria, 7–11 May 2024. [Google Scholar]
- Liu, G.H.; Vahdat, A.; Huang, D.A.; Theodorou, E.A.; Nie, W.; Anandkumar, A. I2SB: Image-to-Image Schrödinger Bridge. arXiv 2023, arXiv:2302.05872. [Google Scholar]
- Zhou, M.; Osher, S.; Li, W. Score-based Neural Ordinary Differential Equations for Computing Mean Field Control Problems. arXiv 2024, arXiv:2409.16471. [Google Scholar]
- Zhu, Q.; Zhao, B.; Zhang, J.; Li, P.; Lin, W. Governing equation discovery of a complex system from snapshots. arXiv 2024, arXiv:2410.16694. [Google Scholar]
- Tong, A.; Malkin, N.; Fatras, K.; Atanackovic, L.; Zhang, Y.; Huguet, G.; Wolf, G.; Bengio, Y. Simulation-Free Schrödinger Bridges via Score and Flow Matching. In Proceedings of the International Conference on Artificial Intelligence and Statistics, PMLR, Valencia, Spain, 2–4 May 2024; pp. 1279–1287. [Google Scholar]
- Chen, Y.; Georgiou, T.T.; Pavon, M. The most likely evolution of diffusing and vanishing particles: Schrodinger bridges with unbalanced marginals. SIAM J. Control Optim. 2022, 60, 2016–2039. [Google Scholar] [CrossRef]
- Baradat, A.; Lavenant, H. Regularized unbalanced optimal transport as entropy minimization with respect to branching brownian motion. arXiv 2021, arXiv:2111.01666. [Google Scholar]
- Buze, M.; Duong, M.H. Entropic regularisation of unbalanced optimal transportation problems. arXiv 2023, arXiv:2305.02410. [Google Scholar]
- Janati, H.; Muzellec, B.; Peyré, G.; Cuturi, M. Entropic optimal transport between unbalanced gaussian measures has a closed form. In Advances in Neural Information Processing Systems; The MIT Press: Cambridge, MA, USA, 2020; Volume 33, pp. 10468–10479. [Google Scholar]
- Chen, R.T.Q.; Rubanova, Y.; Bettencourt, J.; Duvenaud, D. Neural Ordinary Differential Equations. In Advances in Neural Information Processing Systems; The MIT Press: Cambridge, MA, USA, 2018. [Google Scholar]
- Dai Pra, P. A stochastic control approach to reciprocal diffusion processes. Appl. Math. Optim. 1991, 23, 313–329. [Google Scholar] [CrossRef]
- Chen, Y.; Georgiou, T.T.; Pavon, M. On the relation between optimal transport and Schrödinger bridges: A stochastic control viewpoint. J. Optim. Theory Appl. 2016, 169, 671–691. [Google Scholar] [CrossRef]
- Chizat, L.; Peyré, G.; Schmitzer, B.; Vialard, F.X. An interpolating distance between optimal transport and Fisher–Rao metrics. Found. Comput. Math. 2018, 18, 1–44. [Google Scholar] [CrossRef]
- Chizat, L.; Peyré, G.; Schmitzer, B.; Vialard, F.X. Unbalanced optimal transport: Dynamic and Kantorovich formulations. J. Funct. Anal. 2018, 274, 3090–3123. [Google Scholar] [CrossRef]
- Gangbo, W.; Li, W.; Osher, S.; Puthawala, M. Unnormalized optimal transport. J. Comput. Phys. 2019, 399, 108940. [Google Scholar] [CrossRef]
- Raissi, M.; Perdikaris, P.; Karniadakis, G.E. Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 2019, 378, 686–707. [Google Scholar] [CrossRef]
- Pham, D.; Tan, X.; Balderson, B.; Xu, J.; Grice, L.F.; Yoon, S.; Willis, E.F.; Tran, M.; Lam, P.Y.; Raghubar, A.; et al. Robust mapping of spatiotemporal trajectories and cell–cell interactions in healthy and diseased tissues. Nat. Commun. 2023, 14, 7739. [Google Scholar] [CrossRef]
- Zhou, P.; Bocci, F.; Li, T.; Nie, Q. Spatial transition tensor of single cells. Nat. Methods 2024, 21, 1053–1062. [Google Scholar] [CrossRef] [PubMed]
- Shen, X.; Zuo, L.; Ye, Z.; Yuan, Z.; Huang, K.; Li, Z.; Yu, Q.; Zou, X.; Wei, X.; Xu, P.; et al. Inferring cell trajectories of spatial transcriptomics via optimal transport analysis. Cell Syst. 2025, 16, 556175. [Google Scholar] [CrossRef] [PubMed]
- Tan, Y.; Wang, A.; Wang, Z.; Lin, W.; Yan, Y.; Nie, Q.; Shi, J. Transfer learning of multicellular organization via single-cell and spatial transcriptomics. bioRxiv 2024. [Google Scholar] [CrossRef]
- Gu, Y.; Liu, J.; Li, C.; Welch, J.D. Mapping Cell Fate Transition in Space and Time. In Proceedings of the International Conference on Research in Computational Molecular Biology, Cambridge, MA, USA, 29 April–2 May 2024; Springer: Berlin/Heidelberg, Germany, 2024; pp. 417–420. [Google Scholar]
- Qiu, X.; Zhu, D.Y.; Yao, J.; Jing, Z.; Zuo, L.; Wang, M.; Min, K.H.; Pan, H.; Wang, S.; Liao, S.; et al. Spateo: Multidimensional spatiotemporal modeling of single-cell spatial transcriptomics. bioRxiv 2022. [Google Scholar] [CrossRef]
- Wei, X.; Fu, S.; Li, H.; Liu, Y.; Wang, S.; Feng, W.; Yang, Y.; Liu, X.; Zeng, Y.Y.; Cheng, M.; et al. Single-cell Stereo-seq reveals induced progenitor cells involved in axolotl brain regeneration. Science 2022, 377, eabp9444. [Google Scholar] [CrossRef]
- Wang, M.; Hu, Q.; Tu, Z.; Kong, L.; Yao, J.; Xiang, R.; Chen, Z.; Zhao, Y.; Zhou, Y.; Yu, T.; et al. A single-cell 3D spatiotemporal multi-omics atlas from Drosophila embryogenesis to metamorphosis. bioRxiv 2024. [Google Scholar] [CrossRef]
- Zeira, R.; Land, M.; Strzalkowski, A.; Raphael, B.J. Alignment and integration of spatial transcriptomics data. Nat. Methods 2022, 19, 567–575. [Google Scholar] [CrossRef]
- Halmos, P.; Liu, X.; Gold, J.; Chen, F.; Ding, L.; Raphael, B.J. DeST-OT: Alignment of Spatiotemporal Transcriptomics Data. bioRxiv 2024. [Google Scholar] [CrossRef]
- Titouan, V.; Courty, N.; Tavenard, R.; Flamary, R. Optimal transport for structured data with application on graphs. In Proceedings of the International Conference on Machine Learning, PMLR, Long Beach, CA, USA, 9–15 June 2019; pp. 6275–6284. [Google Scholar]
- Chowdhury, S.; Mémoli, F. The Gromov–Wasserstein distance between networks and stable network invariants. Inf. Inference J. IMA 2019, 8, 757–787. [Google Scholar] [CrossRef]
- Cohen, S.; Guibasm, L. The earth mover’s distance under transformation sets. In Proceedings of the Seventh IEEE International Conference on Computer Vision, Corfu, Greece, 20–27 September 1999; Werner, B., Ed.; IEEE: New York, NY, USA, 1999; Volume 2, pp. 1076–1083. [Google Scholar]
- Coifman, R.R.; Kevrekidis, I.G.; Lafon, S.; Maggioni, M.; Nadler, B. Diffusion maps, reduction coordinates, and low dimensional representation of stochastic systems. Multiscale Model. Simul. 2008, 7, 842–864. [Google Scholar] [CrossRef]
- Hetzel, L.; Fischer, D.S.; Günnemann, S.; Theis, F.J. Graph representation learning for single-cell biology. Curr. Opin. Syst. Biol. 2021, 28, 100347. [Google Scholar] [CrossRef]
- Zhang, Y.; Qiu, X.; Ni, K.; Weissman, J.; Bahar, I.; Xing, J. Graph-Dynamo: Learning stochastic cellular state transition dynamics from single cell data. bioRxiv 2023. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, Y.; Gan, J.; Ni, K.; Chen, M.; Bahar, I.; Xing, J. GraphVelo allows inference of multi-modal single cell velocities and molecular mechanisms. bioRxiv 2024. [Google Scholar] [CrossRef]
- Almet, A.A.; Cang, Z.; Jin, S.; Nie, Q. The landscape of cell–cell communication through single-cell transcriptomics. Curr. Opin. Syst. Biol. 2021, 26, 12–23. [Google Scholar] [CrossRef]
- Jin, S.; Guerrero-Juarez, C.F.; Zhang, L.; Chang, I.; Ramos, R.; Kuan, C.H.; Myung, P.; Plikus, M.V.; Nie, Q. Inference and analysis of cell-cell communication using CellChat. Nat. Commun. 2021, 12, 1088. [Google Scholar] [CrossRef]
- Jin, S.; Plikus, M.V.; Nie, Q. CellChat for systematic analysis of cell–cell communication from single-cell transcriptomics. Nat. Protoc. 2025, 20, 180–219. [Google Scholar] [CrossRef]
- Cang, Z.; Zhao, Y.; Almet, A.A.; Stabell, A.; Ramos, R.; Plikus, M.V.; Atwood, S.X.; Nie, Q. Screening cell–cell communication in spatial transcriptomics via collective optimal transport. Nat. Methods 2023, 20, 218–228. [Google Scholar] [CrossRef]
- Almet, A.A.; Tsai, Y.C.; Watanabe, M.; Nie, Q. Inferring pattern-driving intercellular flows from single-cell and spatial transcriptomics. Nat. Methods 2024, 21, 1806–1817. [Google Scholar] [CrossRef]
- Wada, T.; Hironaka, K.i.; Kuroda, S. Cell-to-cell variability serves as information not noise. Curr. Opin. Syst. Biol. 2021, 27, 100339. [Google Scholar]
- Topolewski, P.; Komorowski, M. Information-theoretic analyses of cellular strategies for achieving high signaling capacity—dynamics, cross-wiring, and heterogeneity of cellular states. Curr. Opin. Syst. Biol. 2021, 27, 100352. [Google Scholar] [CrossRef]
- Gandrillon, O.; Stumpf, M.P. Editorial overview: ‘Theoretical approaches to analyze single-cell data’ (April 2021) within the theme ‘Mathematical modelling’. Curr. Opin. Syst. Biol. 2021, 28, 100382. [Google Scholar] [CrossRef]
- Ao, P. Potential in stochastic differential equations: Novel construction. J. Phys. A Math. Gen. 2004, 37, L25. [Google Scholar] [CrossRef]
- Shi, J.; Aihara, K.; Li, T.; Chen, L. Energy landscape decomposition for cell differentiation with proliferation effect. Natl. Sci. Rev. 2022, 9, nwac116. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Zhang, W.; Li, T. EPR-Net: Constructing a non-equilibrium potential landscape via a variational force projection formulation. Natl. Sci. Rev. 2024, 11, nwae052. [Google Scholar] [CrossRef]
- Li, C.; Wang, J. Quantifying cell fate decisions for differentiation and reprogramming of a human stem cell network: Landscape and biological paths. PLoS Comput. Biol. 2013, 9, e1003165. [Google Scholar] [CrossRef]
- Wang, J.; Li, C.; Wang, E. Potential and flux landscapes quantify the stability and robustness of budding yeast cell cycle network. Proc. Natl. Acad. Sci. USA 2010, 107, 8195–8200. [Google Scholar] [CrossRef]
- Li, C.; Wang, J. Landscape and flux reveal a new global view and physical quantification of mammalian cell cycle. Proc. Natl. Acad. Sci. USA 2014, 111, 14130–14135. [Google Scholar] [CrossRef]
- Bian, S.; Zhang, Y.; Li, C. An improved approach for calculating energy landscape of gene networks from moment equations. Chaos Interdiscip. J. Nonlinear Sci. 2023, 33, 023116. [Google Scholar] [CrossRef]
- Bian, S.; Zhou, R.; Lin, W.; Li, C. Quantifying energy landscape of oscillatory systems: Explosion, pre-solution, and diffusion decomposition. arXiv 2024, arXiv:2401.06959. [Google Scholar]
- Zhou, R.; Yu, Y.; Li, C. Revealing neural dynamical structure of C. elegans with deep learning. Iscience 2024, 27, 109759. [Google Scholar] [CrossRef]
- Torregrosa, G.; Garcia-Ojalvo, J. Mechanistic models of cell-fate transitions from single-cell data. Curr. Opin. Syst. Biol. 2021, 26, 79–86. [Google Scholar] [CrossRef]
- Zhu, L.; Wang, J. Quantifying Landscape-Flux via Single-Cell Transcriptomics Uncovers the Underlying Mechanism of Cell Cycle. Adv. Sci. 2024, 11, 2308879. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Yang, S.; Zhang, K.; Wang, H.; Fang, X.; Wang, J. Uncovering underlying physical principles and driving forces of cell differentiation and reprogramming from single-cell transcriptomics. Proc. Natl. Acad. Sci. USA 2024, 121, e2401540121. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Xu, L.; Wang, E. Potential landscape and flux framework of nonequilibrium networks: Robustness, dissipation, and coherence of biochemical oscillations. Proc. Natl. Acad. Sci. USA 2008, 105, 12271–12276. [Google Scholar] [CrossRef]
- Stein-O’Brien, G.L.; Ainslie, M.C.; Fertig, E.J. Forecasting cellular states: From descriptive to predictive biology via single-cell multiomics. Curr. Opin. Syst. Biol. 2021, 26, 24–32. [Google Scholar] [CrossRef]
- Cang, Z.; Zhao, Y. Synchronized Optimal Transport for Joint Modeling of Dynamics Across Multiple Spaces. arXiv 2024, arXiv:2406.03319. [Google Scholar] [CrossRef]
- Demetci, P.; Santorella, R.; Sandstede, B.; Noble, W.S.; Singh, R. SCOT: Single-cell multi-omics alignment with optimal transport. J. Comput. Biol. 2022, 29, 3–18. [Google Scholar] [CrossRef]
- Zhou, X.; Dong, K.; Zhang, S. Integrating spatial transcriptomics data across different conditions, technologies and developmental stages. Nat. Comput. Sci. 2023, 3, 894–906. [Google Scholar] [CrossRef]
- Cao, K.; Gong, Q.; Hong, Y.; Wan, L. A unified computational framework for single-cell data integration with optimal transport. Nat. Commun. 2022, 13, 7419. [Google Scholar] [CrossRef]
- Xia, C.R.; Cao, Z.J.; Tu, X.M.; Gao, G. Spatial-linked alignment tool (SLAT) for aligning heterogenous slices. Nat. Commun. 2023, 14, 7236. [Google Scholar] [CrossRef]
- Gao, Z.; Cao, K.; Wan, L. Graspot: A graph attention network for spatial transcriptomics data integration with optimal transport. bioRxiv 2024. [Google Scholar] [CrossRef] [PubMed]
- Tang, Z.; Luo, S.; Zeng, H.; Huang, J.; Sui, X.; Wu, M.; Wang, X. Search and match across spatial omics samples at single-cell resolution. Nat. Methods 2024, 21, 1818–1829. [Google Scholar] [CrossRef] [PubMed]
- Lahat, D.; Adali, T.; Jutten, C. Multimodal data fusion: An overview of methods, challenges, and prospects. Proc. IEEE 2015, 103, 1449–1477. [Google Scholar] [CrossRef]
- Liu, X.; Zeira, R.; Raphael, B.J. Partial alignment of multislice spatially resolved transcriptomics data. Genome Res. 2023, 33, 1124–1132. [Google Scholar] [CrossRef]
- Wagner, D.E.; Klein, A.M. Lineage tracing meets single-cell omics: Opportunities and challenges. Nat. Rev. Genet. 2020, 21, 410–427. [Google Scholar] [CrossRef]
- Weinreb, C.; Rodriguez-Fraticelli, A.; Camargo, F.D.; Klein, A.M. Lineage tracing on transcriptional landscapes links state to fate during differentiation. Science 2020, 367, eaaw3381. [Google Scholar] [CrossRef]
- Pratapa, A.; Jalihal, A.P.; Law, J.N.; Bharadwaj, A.; Murali, T. Benchmarking algorithms for gene regulatory network inference from single-cell transcriptomic data. Nat. Methods 2020, 17, 147–154. [Google Scholar] [CrossRef]
- Van de Sande, B.; Flerin, C.; Davie, K.; De Waegeneer, M.; Hulselmans, G.; Aibar, S.; Seurinck, R.; Saelens, W.; Cannoodt, R.; Rouchon, Q.; et al. A scalable SCENIC workflow for single-cell gene regulatory network analysis. Nat. Protoc. 2020, 15, 2247–2276. [Google Scholar] [CrossRef]
- Zhang, S.Y. Joint trajectory and network inference via reference fitting. arXiv 2024, arXiv:2409.06879. [Google Scholar]
- Stumpf, M.P. Inferring better gene regulation networks from single-cell data. Curr. Opin. Syst. Biol. 2021, 27, 100342. [Google Scholar] [CrossRef]
- Akers, K.; Murali, T. Gene regulatory network inference in single-cell biology. Curr. Opin. Syst. Biol. 2021, 26, 87–97. [Google Scholar] [CrossRef]
- Zhao, W.; Larschan, E.; Sandstede, B.; Singh, R. Optimal transport reveals dynamic gene regulatory networks via gene velocity estimation. bioRxiv 2024. [Google Scholar] [CrossRef]
- Yang, M. Topological Schrödinger Bridge Matching. In Proceedings of the Thirteenth International Conference on Learning Representations, Singapore, 24–28 April 2025. [Google Scholar]
- Liu, X.; Chang, X.; Liu, R.; Yu, X.; Chen, L.; Aihara, K. Quantifying critical states of complex diseases using single-sample dynamic network biomarkers. PLoS Comput. Biol. 2017, 13, e1005633. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Xiao, K.; Wen, Y.; Wu, F.; Gao, G.; Chen, L.; Zhou, C. Multi-omics with dynamic network biomarker algorithm prefigures organ-specific metastasis of lung adenocarcinoma. Nat. Commun. 2024, 15, 9855. [Google Scholar] [CrossRef]
- Chen, Z.; Bai, X.; Ma, L.; Wang, X.; Liu, X.; Liu, Y.; Chen, L.; Wan, L. A branch point on differentiation trajectory is the bifurcating event revealed by dynamical network biomarker analysis of single-cell data. IEEE/ACM Trans. Comput. Biol. Bioinform. 2018, 17, 366–375. [Google Scholar] [CrossRef]
- Han, C.; Zhong, J.; Zhang, Q.; Hu, J.; Liu, R.; Liu, H.; Mo, Z.; Chen, P.; Ling, F. Development of a dynamic network biomarkers method and its application for detecting the tipping point of prior disease development. Comput. Struct. Biotechnol. J. 2022, 20, 1189–1197. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Z.; Sun, Y.; Peng, Q.; Li, T.; Zhou, P. Integrating Dynamical Systems Modeling with Spatiotemporal scRNA-Seq Data Analysis. Entropy 2025, 27, 453. https://doi.org/10.3390/e27050453
Zhang Z, Sun Y, Peng Q, Li T, Zhou P. Integrating Dynamical Systems Modeling with Spatiotemporal scRNA-Seq Data Analysis. Entropy. 2025; 27(5):453. https://doi.org/10.3390/e27050453
Chicago/Turabian StyleZhang, Zhenyi, Yuhao Sun, Qiangwei Peng, Tiejun Li, and Peijie Zhou. 2025. "Integrating Dynamical Systems Modeling with Spatiotemporal scRNA-Seq Data Analysis" Entropy 27, no. 5: 453. https://doi.org/10.3390/e27050453
APA StyleZhang, Z., Sun, Y., Peng, Q., Li, T., & Zhou, P. (2025). Integrating Dynamical Systems Modeling with Spatiotemporal scRNA-Seq Data Analysis. Entropy, 27(5), 453. https://doi.org/10.3390/e27050453