A Learning Probabilistic Boolean Network Model of a Manufacturing Process with Applications in System Asset Maintenance
Abstract
:1. Introduction
2. Materials and Methods
2.1. Probabilistic Boolean Networks
2.2. Machine Learning
2.3. Description of the Method
3. Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Shmulevich, I.; Dougherty, E.R. Probabilistic Boolean Networks: Modeling and Control of Gene Regulatory Networks; SIAM: Philadelphia, PA, USA, 2010. [Google Scholar]
- Shmulevich, I.; Dougherty, E.R.; Kim, S. Probabilistic Boolean Networks: A Rule-Based Uncertainty Model for Gene Regulatory Networks. Bioinformatics 2002, 18, 261–274. [Google Scholar] [CrossRef] [PubMed]
- Kauffman, S.A. Metabolic stability and epigenesis in randomly constructed genetic nets. J. Theor. Biol. 1969, 22, 437–467. [Google Scholar] [CrossRef] [PubMed]
- Kauffman, S.A. Homeostasis and differentiation in random genetic control networks. Nature 1969, 5215, 177–178. [Google Scholar] [CrossRef] [PubMed]
- Rivera Torres, P.J.; Gershenson García, C.; Sánchez Puig, M.F.; Kanaan Izquierdo, S. Reinforcement Learning with Probabilistic Boolean Networks. Complexity 2022, 2022, 3652441. [Google Scholar] [CrossRef]
- Rivera Torres, P.J.; Serrano Mercado, E.I.; Anido Rifon, L.E. Probabilistic boolean network modeling of an industrial machine. J. Intell. Manuf. 2018, 29, 875–890. [Google Scholar] [CrossRef]
- Rivera Torres, P.J.; Serrano Mercado, E.I.; Anido Rifon, L.E. Probabilistic Boolean Network modeling and model checking as an approach for DFMEA for manufacturing systems. J. Intell. Manuf. 2018, 29, 1393–1413. [Google Scholar] [CrossRef]
- Rivera Torres, P.J.; Serrano Mercado, E.I.; Llanes Santiago, O.; Anido Rifon, L.E. Modeling preventive maintenance of manufacturing processes with probabilistic boolean networks with interventions. J. Intell. Manuf. 2018, 29, 1941–1952. [Google Scholar] [CrossRef]
- Rivera Torres, P.J.; Serrano, E.I. Probabilistic Boolean Network Modeling as an aid for DFMEA in Manufacturing Systems. In Proceedings of the 18th Scientific Convention of Engineering and Architecture, Havana, Cuba, 22–26 November 2016. [Google Scholar]
- Rivera Torres, P.J.; Gershenson García, C.; Sánchez Puig, M.F.; Franco, M.; Kanaan Izquierdo, S. Reinforcement Learning with Probabilistic Boolean Networks in Smart Grid Models. Studies in Systems, Decision and Control. In Proceedings of the 19th Latin American Control Congress; Llanes-Santiago, O., Ed.; Spring: Berlin/Heidelberg, Germany, 2023; Volume 464, pp. 215–224. [Google Scholar]
- Papagiannis, G.; Moschoyiannis, S. Deep Reinforcement Learning for Control of Probabilistic Boolean Networks. In Complex Networks and Their Applications IX; Benito, R.M., Cherifi, C., Cherifi, H., Moro, E., Rocha, L.M., Sales-Pardo, M., Eds.; Studies in Computational Intelligence; Springer: Berlin/Heidelberg, Germany, 2021; Volume 944. [Google Scholar]
- Rivera Torres, P.J.; Chen, C.; Macías-Aguayo, J.; Rodríguez González, S.; Prieto Tejedor, J.; Llanes Santiago, O.; Gershenson García, C.; Kanaan Izquierdo, S. A learning Probabilistic Boolean Network Model of a Smart Grid with applications in System Maintenance. Energies 2024, 17, 6399. [Google Scholar] [CrossRef]
- Rivera Torres, P.J.; Gershenson García, C.; Kanaan Izquierdo, S. Fault Detection and Isolation in Smart-Grid Networks of Intelligent Power Routers Modeled as Probabilistic Boolean Networks. Complexity 2023, 2023, 6690805. [Google Scholar] [CrossRef]
- Rivera Torres, P.J.; Llanes Santiago, O. Model-based Fault Diagnosis of Manufacturing Processes and Machines using Probabilistic Boolean Networks. In Proceedings of the 19th Scientific Conference of Engineering and Architecture, Havana, Cuba, 22–26 November 2018. [Google Scholar]
- Isermann, R. Fault-Diagnosis Applications: Model-Based Condition Monitoring: Actuators, Drives, Machinery, Plants, Sensors, and Fault-Tolerant Systems; Springer: London, UK, 2011. [Google Scholar]
- Kwiatkowska, M.Z.; Norman, G.; Parker, D. PRISM 4.0: Verification of probabilistic real-time systems. In Computer Aided Verification. Lecture Notes in Computer Science; Gopalakrishnan, G., Qadeer, S., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; Volume 6806, pp. 585–591. [Google Scholar]
- Frenkel, C.; Lefebvre, M.; Bol, D. Learning without feedback: Fixed random learning signals allow for feedforward training of deep neural networks. Front. Neuroscie 2021, 13, 629892. [Google Scholar] [CrossRef] [PubMed]
- Gershenson, C. Updating schemes in random Boolean networks: Do they really matter? In Artificial Life IX, Proceedings of the Ninth International Conference on the Simulation and Synthesis of Living Systems; Pollack, J., Bedau, M., Husbands, P., Ikegami, T., Watson, R.A., Eds.; MIT Press: Cambridge, MA, USA, 2004; pp. 238–243. Available online: http://arxiv.org/abs/nlin.AO/0402006 (accessed on 1 March 2025).
- López-Díaz, A.J.; Sánchez-Puig, M.F.; Gershenson, C. Temporal, structural, and functional heterogeneities extend criticality and antifragility in random Boolean networks. Entropy 2023, 25, 254. [Google Scholar] [CrossRef] [PubMed]
Final SI | Initial Satisfaction Index (SI) | |||||||
---|---|---|---|---|---|---|---|---|
SI = 0.55 | SI = 0.65 | SI = 0.75 | SI = 0.85 | |||||
NI | NCS | NI | NCS | NI | NCS | NI | NCS | |
0.65 | 90 | 80 | -- | -- | -- | -- | -- | -- |
0.75 | 97 | 98 | 22 | 11 | -- | -- | -- | -- |
0.85 | 198 | 469 | 77 | 133 | 54 | 41 | -- | -- |
0.95 | 270 | 675 | 92 | 693 | 144 | 180 | 4 | 12 |
(a) | ||||||||
Final SI | Initial Satisfaction Index (SI) | |||||||
SI = 0.55 | SI = 0.65 | SI = 0.75 | SI = 0.85 | |||||
NI | NCS | NI | NCS | NI | NCS | NI | NCS | |
0.65 | 13 | 4 | -- | -- | -- | -- | -- | -- |
0.75 | 22 | 20 | 31 | 6 | -- | -- | -- | -- |
0.85 | 34 | 55 | 35 | 17 | 18 | 11 | -- | -- |
0.95 | 222 | 1233 | 69 | 278 | 20 | 88 | 40 | 30 |
(b) | ||||||||
Final SI | Initial Satisfaction Index (SI) | |||||||
SI = 0.55 | SI = 0.65 | SI = 0.75 | SI = 0.85 | |||||
NI | NCS | NI | NCS | NI | NCS | NI | NCS | |
0.65 | 96 | 64 | -- | -- | -- | -- | -- | -- |
0.75 | 108 | 101 | 175 | 78 | -- | -- | -- | -- |
0.85 | 223 | 611 | 626 | 516 | 115 | 35 | -- | -- |
0.95 | 139 | 276 | 368 | 511 | 135 | 76 | 216 | 260 |
Final SI | Initial Satisfaction Index (SI) | |||||||
---|---|---|---|---|---|---|---|---|
SI = 0.55 | SI = 0.65 | SI = 0.75 | SI = 0.85 | |||||
NI | NCS | NI | NCS | NI | NCS | NI | NCS | |
0.65 | 14 | 10 | -- | -- | -- | -- | -- | -- |
0.75 | 42 | 77 | 19 | 4 | -- | -- | -- | -- |
0.85 | 84 | 266 | 56 | 86 | 51 | 23 | -- | -- |
0.95 | 109 | 756 | 189 | 705 | 342 | 517 | 56 | 90 |
Final SI | Initial Satisfaction Index (SI) | |||||||
---|---|---|---|---|---|---|---|---|
SI = 0.55 | SI = 0.65 | SI = 0.75 | SI = 0.85 | |||||
NI | NCS | NI | NCS | NI | NCS | NI | NCS | |
0.65 | 21 | 2 | -- | -- | -- | -- | -- | -- |
0.75 | 65 | 119 | 8 | 1 | -- | -- | -- | -- |
0.85 | 87 | 263 | 20 | 23 | 43 | 27 | -- | -- |
0.95 | 88 | 479 | 92 | 332 | 102 | 50 | 152 | 67 |
Final SI | Initial Satisfaction Index (SI) | |||||||
---|---|---|---|---|---|---|---|---|
SI = 0.55 | SI = 0.65 | SI = 0.75 | SI = 0.85 | |||||
NI | NCS | NI | NCS | NI | NCS | NI | NCS | |
0.65 | 8 | 5 | -- | -- | -- | -- | -- | -- |
0.75 | 26 | 41 | 12 | 12 | -- | -- | -- | -- |
0.85 | 33 | 49 | 57 | 99 | 22 | 16 | -- | -- |
0.95 | 131 | 866 | 62 | 141 | 28 | 309 | 427 | 185 |
Final SI | Initial Satisfaction Index (SI) | |||||||
---|---|---|---|---|---|---|---|---|
SI = 0.55 | SI = 0.65 | SI = 0.75 | SI = 0.85 | |||||
NI | NCS | NI | NCS | NI | NCS | NI | NCS | |
0.65 | 9 | 12 | -- | -- | -- | -- | -- | -- |
0.75 | 10 | 11 | 68 | 34 | -- | -- | -- | -- |
0.85 | 59 | 112 | 85 | 100 | 107 | 55 | -- | -- |
0.95 | 91 | 1220 | 472 | 1119 | 139 | 152 | 53 | 44 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rivera Torres, P.J.; Chen, C.; Rodríguez González, S.; Llanes Santiago, O. A Learning Probabilistic Boolean Network Model of a Manufacturing Process with Applications in System Asset Maintenance. Entropy 2025, 27, 463. https://doi.org/10.3390/e27050463
Rivera Torres PJ, Chen C, Rodríguez González S, Llanes Santiago O. A Learning Probabilistic Boolean Network Model of a Manufacturing Process with Applications in System Asset Maintenance. Entropy. 2025; 27(5):463. https://doi.org/10.3390/e27050463
Chicago/Turabian StyleRivera Torres, Pedro Juan, Chen Chen, Sara Rodríguez González, and Orestes Llanes Santiago. 2025. "A Learning Probabilistic Boolean Network Model of a Manufacturing Process with Applications in System Asset Maintenance" Entropy 27, no. 5: 463. https://doi.org/10.3390/e27050463
APA StyleRivera Torres, P. J., Chen, C., Rodríguez González, S., & Llanes Santiago, O. (2025). A Learning Probabilistic Boolean Network Model of a Manufacturing Process with Applications in System Asset Maintenance. Entropy, 27(5), 463. https://doi.org/10.3390/e27050463