Novel Extraction Method Using Excipients to Enhance Yield of Genistein and Daidzein in Trifolium pratensis L.
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Extraction of Plant Material
2.2.1. Moisture Determination of Red Clover Plant Matearial
2.2.2. Maceration Extraction (ME)
2.2.3. Ultrasound-Assisted Extraction (UAE)
2.2.4. Heat-Reflux Extraction (HRE)
2.3. Hydrolysis and Neutralization
2.3.1. Acidic Hydrolysis and Neutralization
2.3.2. Alkaline Hydrolysis and Neutralization
2.3.3. Thermal Hydrolysis
2.3.4. Maceration Extraction (ME) with Natural Hydrolysis
2.4. HPLC–PDA Conditions
2.5. Statistical Analysis
3. Results and Discussion
3.1. Determination of Isoflavones Aglycones in Trifolium pratensis L. Extracts
3.1.1. Aglycones Extraction Using UAE Method
3.1.2. Aglycones Extraction Using UAE Method with Acidic Hydrolysis
3.1.3. Aglycones Extraction Using UAE Method with Alkaline Hydrolysis
3.1.4. Aglycones Extraction Using UAE, HRE, ME and ME with Natural Fermentation
3.2. Selection of the Excipients
3.3. Vinylpyrrolidone-Vinyl Acetate Copolymer Determination of the Optimal Concentration for Higher Amounts of Aglycones Using Purified Water
3.4. Vinylpyrrolidone-Vinyl Acetate Copolymer Use with Ethanol
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Booth, N.L.; Overk, C.R.; Yao, P.; Totura, S.; Deng, Y.; Hedayat, A.S.; Bolton, J.L.; Pauli, G.F.; Farnsworth, N.R. Seasonal Variation of Red Clover (Trifolium Pratense L., Fabaceae) Isoflavones and Estrogenic Activity. J. Agric. Food Chem. 2006, 54, 1277–1282. [Google Scholar] [CrossRef] [Green Version]
- Sabudak, T.; Guler, N. Trifolium L.-A Review on Its Phytochemical and Pharmacological Profile. Phyther. Res. 2009, 23, 439–446. [Google Scholar] [CrossRef] [PubMed]
- Křížová, L.; Dadáková, K.; Kašparovská, J.; Kašparovský, T. Isoflavones. Molecules 2019, 24, 1076. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zgórka, G. Pressurized Liquid Extraction versus Other Extraction Techniques in Micropreparative Isolation of Pharmacologically Active Isoflavones from Trifolium L. Species. Talanta. 2009, 46–53. [Google Scholar] [CrossRef]
- Khazaei, M.; Pazhouhi, M. Antiproliferative Effect of Trifolium Pratens L. Extract in Human Breast Cancer Cells. Nutr. Cancer 2019, 71, 128–140. [Google Scholar] [CrossRef]
- Booth, N.L.; Piersen, C.E.; Banuvar, S.; Geller, S.E.; Shulman, L.P.; Farnsworth, N.R. Clinical Studies of Red Clover (Trifolium Pratense) Dietary Supplements in Menopause: A Literature Review. Menopause 2006, 13, 251–264. [Google Scholar] [CrossRef]
- Engelhardt, P.F.; Riedl, C.R. Effects of One-Year Treatment with Isoflavone Extract from Red Clover on Prostate, Liver Function, Sexual Function, and Quality of Life in Men with Elevated PSA Levels and Negative Prostate Biopsy Findings. Urology 2008, 71, 185–190. [Google Scholar] [CrossRef] [PubMed]
- Kanadys, W.; Baranska, A.; Jedrych, M.; Religioni, U.; Janiszewska, M. Effects of Red Clover (Trifolium Pratense) Isoflavones on the Lipid Profile of Perimenopausal and Postmenopausal Women—A Systematic Review and Meta-Analysis. Maturitas 2020, 132, 7–16. [Google Scholar] [CrossRef] [PubMed]
- Beck, V.; Rohr, U.; Jungbauer, A. Phytoestrogens Derived from Red Clover: An Alternative to Estrogen Replacement Therapy? J. Steroid Biochem. Mol. Biol. 2005, 94, 499–518. [Google Scholar] [CrossRef] [PubMed]
- Occhiuto, F.; De Pasquale, R.; Guglielmo, G.; Palumbo, D.R.; Zangla, G.; Samperi, S.; Renzo, A.; Circosta, C. Effects of Phytoestrogenic Isoflavones from Red Clover (Trifolium Pratense L.) on Experimental Osteoporosis. Phyther. Res. 2007, 21, 130–134. [Google Scholar] [CrossRef]
- Baber, R. Phytoestrogens and Post Reproductive Health. Maturitas 2010, 66, 344–349. [Google Scholar] [CrossRef] [PubMed]
- Rafii, F. The Role of Colonic Bacteria in the Metabolism of the Natural Isoflavone Daidzin to Equol. Metabolites 2015, 5, 56–73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, Y.; Liu, Z.; Wang, J. Ultrasound-Assisted Extraction of Five Isoflavones from Iris Tectorum Maxim. Sep. Purif. Technol. 2011, 78, 49–54. [Google Scholar] [CrossRef] [PubMed]
- Pandit, N.T.; Patravale, V.B. Design and Optimization of a Novel Method for Extraction of Genistein. Indian J. Pharm. Sci. 2011, 73, 184–192. [Google Scholar] [CrossRef] [Green Version]
- Blicharski, T.; Oniszczuk, A. Extraction Methods for the Isolation of Isoflavonoids from Plant Material. Open Chem. 2017, 15, 34–45. [Google Scholar] [CrossRef]
- Rostagno, M.A.; Manchón, N.; Guillamón, E.; García-Lafuente, A.; Villares, A.; Martínez, J.A. Methods and Techniques for the Analysis of Isoflavones in Foods; Nova Science Publishers: New York, NY, USA, 2010. [Google Scholar]
- Nemitz, M.C.; Moraes, R.C.; Koester, L.S.; Bassani, V.L.; von Poser, G.L.; Teixeira, H.F. Bioactive Soy Isoflavones: Extraction and Purification Procedures, Potential Dermal Use and Nanotechnology-Based Delivery Systems. Phytochem. Rev. 2015, 14, 849–869. [Google Scholar] [CrossRef]
- Saravanabavan, N.; Salwe, K.J.; Sudar Codi, R.; Kumarappan, M. Herbal Extraction Procedures: Need of the Hour. Int. J. Basic Clin. Pharmacol. 2020, 9, 1135. [Google Scholar] [CrossRef]
- Pham, T.T.; Shah, N.P. Hydrolysis of Isoflavone Glycosides in Soy Milk by β-Galactosidase and β-Glucosidase. J. Food Biochem. 2009, 33, 38–60. [Google Scholar] [CrossRef]
- Huang, H.; Liang, H.; Kwok, K.-C. Effect of Thermal Processing on Genistein, Daidzein and Glycitein Content in Soymilk. J. Sci. Food Agric. 2006, 86, 1110–1114. [Google Scholar] [CrossRef]
- Kar, M.; Chourasiya, Y.; Maheshwari, R.; Tekade, R.K. Current Developments in Excipient Science: Implication of Quantitative Selection of Each Excipient in Product Development. In Basic Fundamentals of Drug Delivery; Elsevier Inc.: Amsterdam, The Netherland, 2018. [Google Scholar] [CrossRef]
- Kerlin, R.L.; Li, X. Pathology in Non-Clinical Drug Safety Assessment, 3rd ed.; Elsevier: Amsterdam, The Netherlands, 2013. [Google Scholar] [CrossRef]
- Matulyte, I.; Marksa, M.; Ivanauskas, L.; Kalveniene, Z.; Lazauskas, R.; Bernatoniene, J. GC-MS Analysis of the Composition of the Extracts and Essential Oil from Myristica Fragrans Seeds Using Magnesium Aluminometasilicate as Excipient. Molecules 2019, 24, 1062. [Google Scholar] [CrossRef] [Green Version]
- Markl, D.; Zeitler, J.A. A Review of Disintegration Mechanisms and Measurement Techniques. Pharm. Res. 2017, 34, 890–917. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van der Merwe, J.; Steenekamp, J.; Steyn, D.; Hamman, J. The Role of Functional Excipients in Solid Oral Dosage Forms to Overcome Poor Drug Dissolution and Bioavailability. Pharmaceutics 2020, 12, 393. [Google Scholar] [CrossRef] [PubMed]
- Jagtap, P.S.; Tagad, R.R.; Shendge, R.S. A Brief Review on Kollidon. J. Drug Deliv. Ther. 2019, 9, 493–500. [Google Scholar] [CrossRef] [Green Version]
- Kazlauskaite, J.A.; Ivanauskas, L.; Bernatoniene, J. Cyclodextrin-Assisted Extraction Method as a Green Alternative to Increase the Isoflavone Yield from Trifolium Pratensis L. Extract. Pharmaceutics 2021, 13, 620. [Google Scholar] [CrossRef] [PubMed]
- Krähmer, A.; Gudi, G.; Weiher, N.; Gierus, M.; Schütze, W.; Schulz, H. Characterization and Quantification of Secondary Metabolite Profiles in Leaves of Red and White Clover Species by NIR and ATR-IR Spectroscopy. Vib. Spectrosc. 2013, 68, 96–103. [Google Scholar] [CrossRef]
- Sun, J.; Sun, B.; Han, F.; Yan, S.; Yang, H.; Akio, K. Rapid HPLC Method for Determination of 12 Isoflavone Components in Soybean Seeds. Agric. Sci. China 2011, 10, 70–77. [Google Scholar] [CrossRef]
- Lante, A.; Barion, G.; Zannoni, S.; Rita, M.; Tinello, F.; Dal, C.; Mosca, G. An Ecofriendly Procedure to Extract Iso Fl Avones from Soybean Seeds. J. Clean. Prod. 2018, 170, 1102–1110. [Google Scholar] [CrossRef]
- Yoshiara, L.Y.; Madeira, T.B.; Delaroza, F.; Da Silva, J.B.; Ida, E.I. Optimization of Soy Isoflavone Extraction with Different Solvents Using the Simplex-Centroid Mixture Design. Int. J. Food Sci. Nutr. 2012, 63, 978–986. [Google Scholar] [CrossRef]
- Rostagno, M.A.; Palma, M.; Barroso, C.G. Ultrasound-Assisted Extraction of Soy Isoflavones. J. Chromatogr. A. 2003, 1012, 119–128. [Google Scholar] [CrossRef]
- Ebringerová, A.; Hromádková, Z. An Overview on the Application of Ultrasound in Extraction, Separation and Purification of Plant Polysaccharides. Cent. Eur. J. Chem. 2010, 8, 243–257. [Google Scholar] [CrossRef]
- Vinatoru, M.; Mason, T.J.; Calinescu, I. Ultrasonically Assisted Extraction (UAE) and Microwave Assisted Extraction (MAE) of Functional Compounds from Plant Materials. TrAC Trends Anal. Chem. 2017, 97, 159–178. [Google Scholar] [CrossRef]
- Vinatoru, M. An Overview of the Ultrasonically Assisted Extraction of Bioactive Principles from Herbs. Ultrason. Sonochem. 2001, 8, 303–313. [Google Scholar] [CrossRef]
- Chiang, W.D.; Shih, C.J.; Chu, Y.H. Optimization of Acid Hydrolysis Conditions for Total Isoflavones Analysis in Soybean Hypocotyls by Using RSM. Food Chem. 2001, 72, 499–503. [Google Scholar] [CrossRef]
- Mathias, K.; Ismail, B.; Corvalan, C.M.; Hayes, K.D. Heat and PH Effects on the Conjugated Forms of Genistin and Daidzin Isoflavones. J. Agric. Food Chem. 2006, 54, 7495–7502. [Google Scholar] [CrossRef] [PubMed]
- Gikas, E.; Alesta, A.; Economou, G.; Karamanos, A.; Tsarbopoulos, A. Determination of Isoflavones in the Aerial Part of Red Clover by HPLC-Diode Array Detection. J. Liq. Chromatogr. Relat. Technol. 2008, 31, 1181–1194. [Google Scholar] [CrossRef]
- Fahmi, R.; Khodaiyan, F. Effect of Ultrasound Assisted Extraction upon the Genistin and Daidzin Contents of Resultant Soymilk. J. Food Sci. Technol. 2014, 51, 2857–2861. [Google Scholar] [CrossRef] [Green Version]
- Xu, Z.; Wu, Q.; Godber, J.S. Stabilities of Daidzin, Glycitin, Genistin, and Generation of Derivatives during Heating. J. Agric. Food Chem. 2002, 50, 7402–7406. [Google Scholar] [CrossRef]
- Vadlamudi, M.K.; Dhanaraj, S. Significance of Excipients to Enhance the Bioavailability of Poorly Water-Soluble Drugs in Oral Solid Dosage Forms: A Review. IOP Conf. Ser. Mater. Sci. Eng. 2017, 263, 022023. [Google Scholar] [CrossRef] [Green Version]
- Vraníková, B.; Gajdziok, J. Liquisolid Systems and Aspects Influencing Their Research and Development. Acta Pharm. 2013, 63, 447–465. [Google Scholar] [CrossRef] [Green Version]
Sample Code | Method * | Hydrolysis Method | Solvent | Processing/Extraction Time, min |
---|---|---|---|---|
UNE710 | U | - | ethanol 70% | 10 |
UACE710 | acidic | 10 | ||
UALE710 | alkaline | 10 | ||
UNE730 | - | 30 | ||
UACE730 | acidic | 30 | ||
UALE730 | alkaline | 30 | ||
UNE510 | U | - | ethanol 50% | 10 |
UACE510 | acidic | 10 | ||
UALE510 | alkaline | 10 | ||
UTE510 | thermal | 10 | ||
UNE530 | - | 30 | ||
UACE530 | acidic | 30 | ||
UALE530 | alkaline | 30 | ||
UTE530 | thermal | 30 | ||
HNW | H | - | purified water | 60 |
UTW10 | U | thermal | purified water | 10 |
UTW30 | 30 | |||
MNE5 | M | - | ethanol 50% | 1080 |
MNE7 | - | ethanol 70% | ||
MFM | M | natural fermentation | 70%; 96% ethanol, deionized water | 2880 |
HNE5 | H | - | ethanol 50% | 60 |
Sample Code | Extraction Method * | Hydrolysis Method | Solvent | Excipient | Excipient: Extract Ratio | Processing Time, min |
---|---|---|---|---|---|---|
UTEMO10 | U | thermal | ethanol 50% | Magnesium aluminometasilicate | 1:100 | 10 |
UTEMO30 | 30 | |||||
HNEMO | H | - | 60 | |||
UTWMO10 | U | thermal | purified water | 1:100 | 10 | |
UTWMO30 | 30 | |||||
HNWMO | H | - | 60 | |||
UHWCO10 | U | thermal | purified water | Croscarmellose sodium | 1:100 | 10 |
UHWCO30 | 30 | |||||
HNWCO | H | - | 60 | |||
UTWSO10 | U | thermal | purified water | Sodium carboxymethyl starch | 1:100 | 10 |
UTWSO30 | 30 | |||||
HNWSO | H | - | 60 | |||
UTWVO10 | U | thermal | purified water | Vinylpyrrolidone-vinyl acetate copolymer | 1:100 | 10 |
UTWVO30 | 30 | |||||
HNWVO | H | - | 60 | |||
UTWVT10 | U | thermal | purified water | 2.5:100 | 10 | |
UTWVT30 | 30 | |||||
HNWVT | H | - | 60 | |||
UTWVF10 | U | thermal | purified water | 5:100 | 10 | |
UTWVF30 | 30 | |||||
HNWVF | H | - | 60 | |||
UTEVO10 | U | thermal | ethanol 50% | 1:100 | 10 | |
UTEVO30 | 30 | |||||
HNEVO | H | - | 60 |
Component | Calibration Equation | Coefficient of Determination R2 | Coefficient of Correlation R | LOD * | LOQ ** |
---|---|---|---|---|---|
Daidzein | 59,664.2× + 37,164.6 | 0.9999 | 0.9999 | 0.05 | 0.12 |
Genistein | 73,083.1× + 44,202.9 | 0.9999 | 0.9999 | 0.05 | 0.12 |
Daidzin | 38,202.1× + 19,377.4 | 0.9999 | 0.9999 | 0.08 | 0.31 |
Genistin | 49,602.9× + 24,083.3 | 0.9999 | 0.9999 | 0.075 | 0.28 |
Sample Code | Genistin, µg/g dw | Daidzin, µg/g dw |
---|---|---|
UACE710 | 0.00 ± 0.00 | 221.37 ± 11.06 |
UACE730 | 0.00 ± 0.00 | 94.37 ± 4.71 |
MNE7 | 95.67 ± 4.78 | 0.00 ± 0.00 |
UACE510 | 0.00 ± 0.00 | 15.33 ± 0.76 |
UACE530 | 0.00 ± 0.00 | 43.80 ± 2.34 |
MNE5 | 95.40 ± 4.77 | 0.00 ± 0.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kazlauskaite, J.A.; Ivanauskas, L.; Bernatoniene, J. Novel Extraction Method Using Excipients to Enhance Yield of Genistein and Daidzein in Trifolium pratensis L. Pharmaceutics 2021, 13, 777. https://doi.org/10.3390/pharmaceutics13060777
Kazlauskaite JA, Ivanauskas L, Bernatoniene J. Novel Extraction Method Using Excipients to Enhance Yield of Genistein and Daidzein in Trifolium pratensis L. Pharmaceutics. 2021; 13(6):777. https://doi.org/10.3390/pharmaceutics13060777
Chicago/Turabian StyleKazlauskaite, Jurga Andreja, Liudas Ivanauskas, and Jurga Bernatoniene. 2021. "Novel Extraction Method Using Excipients to Enhance Yield of Genistein and Daidzein in Trifolium pratensis L." Pharmaceutics 13, no. 6: 777. https://doi.org/10.3390/pharmaceutics13060777