A Particulate Matter Concentration Prediction Model Based on Long Short-Term Memory and an Artificial Neural Network
Abstract
:1. Introduction
2. Data Collection and Processing Methods
2.1. PM Measurement Site
2.2. Meteorological and PM Datasets
2.3. PM Prediction Model Structure
2.4. Pre-Processing
2.4.1. Principal Component Analysis
2.4.2. Linear Discriminant Analysis
2.5. Artificial Neural Networks
2.6. Long Short-Term Memory
2.7. Model Selection
- Apply standard scaler and extract variables by PCA and LDA;
- Calculate the F1-score for each model. For the ANN and LSTM models, store the hourly F1-score values of the validation data.
- Compare the F1-score by model and generate hourly time maps.
- Select a model for each hour. Extract values corresponding to the hour using the linear regression model, and select the model showing the highest value;
- Obtain the prediction result.
3. Results and Discussion
3.1. Experimental Environment
3.2. Performance Evaluation Method
3.3. PM Prediction Model Analysis
3.4. PM Prediction Performance Evaluation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xu, Y.; Du, P.; Wang, J. Research and application of a hybrid model based on dynamic fuzzy synthetic evaluation for establishing air quality forecasting and early warning system: A case study in China. Environ. Pollut. 2017, 223, 435–448. [Google Scholar] [CrossRef]
- Song, R.; Yang, L.; Liu, M.; Li, C.; Yang, Y. Spatiotemporal Distribution of Air Pollution Characteristics in Jiangsu Province, China. Adv. Meteorol. 2019, 2019, 5907673. [Google Scholar] [CrossRef] [Green Version]
- Xing, Y.-F.; Xu, Y.-H.; Shi, M.-H.; Lian, Y.-X. The impact of PM2.5 on the human respiratory system. J. Thorac. Dis. 2016, 8, E69–E74. [Google Scholar] [PubMed]
- Chang, Y.-S.; Lin, K.-M.; Tsai, Y.-T.; Zeng, Y.-R.; Hung, C.-X. Big data platform for air quality analysis and prediction. In Proceedings of the 2018 27th Wireless and Optical Communication Conference (WOCC), Hualien, Taiwan, 30 April–1 May 2018; pp. 1–3. [Google Scholar]
- Gan, K.; Sun, S.; Wang, S.; Wei, Y. A secondary-decomposition-ensemble learning paradigm for forecasting PM2.5 concentration. Atmos. Pollut. Res. 2018, 9, 989–999. [Google Scholar] [CrossRef]
- Song, Y.; Qin, S.; Qu, J.; Liu, F. The forecasting research of early warning systems for atmospheric pollutants: A case in Yangtze River Delta region. Atmos. Environ. 2015, 118, 58–69. [Google Scholar] [CrossRef]
- Li, R.; Dong, Y.; Zhu, Z.; Li, C.; Yang, H. A dynamic evaluation framework for ambient air pollution monitoring. Appl. Math. Model. 2019, 65, 52–71. [Google Scholar] [CrossRef]
- Choubin, B.; Abdolshahnejad, M.; Moradi, E.; Querol, X.; Mosavi, A.; Shamshirband, S.; Ghamisi, P. Spatial hazard assessment of the PM10 using machine learning models in Barcelona, Spain. Sci. Total Environ. 2020, 701, 134474. [Google Scholar] [CrossRef]
- Liu, H.; Xu, Y.; Chen, C. Improved pollution forecasting hybrid algorithms based on the ensemble method. Appl. Math. Model. 2019, 73, 473–486. [Google Scholar] [CrossRef]
- Torrisi, M.; Pollastri, G.; Le, Q. Deep learning methods in protein structure prediction. Comput. Struct. Biotechnol. J. 2020, 521, 436–444. [Google Scholar] [CrossRef]
- Ordieres-Meré, J.; Vergara, E.; Capuz-Rizo, S.F.; Salazar, R. Neural network prediction model for fine particulate matter (PM2.5) on the US—Mexico border in El Paso (Texas) and Ciudad Juárez (Chihuahua). Environ. Model. Softw. 2005, 20, 547–559. [Google Scholar] [CrossRef]
- Russo, A.; Raischel, F.; Lind, P.G. Air quality prediction using optimal neural networks with stochastic variables. Atmos. Environ. 2013, 79, 822–830. [Google Scholar] [CrossRef] [Green Version]
- Qi, Y.; Li, Q.; Karimian, H.; Liu, D. A hybrid model for spatiotemporal forecasting of PM2.5 based on graph convolutional neural network and long short-term memory. Sci. Total Environ. 2019, 664, 1–10. [Google Scholar] [CrossRef]
- Singh, K.P.; Gupta, S.; Rai, P. Identifying pollution sources and predicting urban air quality using ensemble learning methods. Atmos. Environ. 2013, 80, 426–437. [Google Scholar] [CrossRef]
- De Souza Tadano, Y.; Siqueira, H.V.; Alves, T.A. Unorganized machines to predict hospital admissions for respiratory diseases. In Proceedings of the 2016 IEEE Latin American Conference on Computational Intelligence (LA-CCI), Cartagena, Colombia, 2–4 November 2016; pp. 1–6. [Google Scholar]
- Ahani, I.K.; Salari, M.; Shadman, A. An ensemble multi-step-ahead forecasting system for fine particulate matter in urban areas. J. Clean. Prod. 2020, 263, 120983. [Google Scholar] [CrossRef]
- Bueno, A.; Coelho, G.P.; Junior, J.R.B. Dynamic ensemble mechanisms to improve particulate matter forecasting. Appl. Soft Comput. 2020, 91, 106123. [Google Scholar] [CrossRef]
- Neto, P.S.D.M.; Firmino, P.R.A.; Siqueira, H.; Tadano, Y.D.S.; Alves, T.A.; De Oliveira, J.F.L.; Marinho, M.H.D.N.; Madeiro, F. Neural-Based Ensembles for Particulate Matter Forecasting. IEEE Access 2021, 9, 14470–14490. [Google Scholar] [CrossRef]
- Chen, Y.; Shi, R.; Shu, S.; Gao, W. Ensemble and enhanced PM10 concentration forecast model based on stepwise regression and wavelet analysis. Atmos. Environ. 2013, 74, 346–359. [Google Scholar] [CrossRef]
- Zhai, B.; Chen, J. Development of a stacked ensemble model for forecasting and analyzing daily average PM2. 5 concentrations in Beijing. Sci. Total Environ. 2018, 635, 644–658. [Google Scholar] [CrossRef]
- Kouziokas, G.N. SVM kernel based on particle swarm optimized vector and Bayesian optimized SVM in atmospheric particulate matter forecasting. Appl. Soft Comput. 2020, 93, 106410. [Google Scholar] [CrossRef]
- Xu, X.; Ren, W. Application of a hybrid model based on echo state network and improved particle swarm optimization in PM2. 5 concentration forecasting: A case study of Beijing, China. Sustainability 2019, 11, 3096. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Luo, A.; Li, J.; Li, Y. Air pollutant concentration forecast based on support vector regression and quantum-behaved particle swarm optimization. Environ. Model. Assess. 2019, 24, 205–222. [Google Scholar] [CrossRef]
- Albuquerque Filho, F.S.D.; Madeiro, F.; Fernandes, S.M.; de Mattos Neto, P.S.; Ferreira, T.A. Time series forecasting of pollutant concentration levels using particle swarm optimization and artificial neural networks. Química Nova 2013, 36, 783–789. [Google Scholar] [CrossRef] [Green Version]
- De Mattos Neto, P.S.; Cavalcanti, G.D.; Madeiro, F.; Ferreira, T.A. An approach to improve the performance of PM forecasters. PLoS ONE 2015, 10, e0138507. [Google Scholar] [CrossRef] [Green Version]
- Díaz-Robles, L.A.; Ortega, J.C.; Fu, J.S.; Reed, G.D.; Chow, J.C.; Watson, J.G.; Moncada-Herrera, J.A. A hybrid ARIMA and artificial neural networks model to forecast particulate matter in urban areas: The case of Temuco, Chile. Atmos. Environ. 2008, 42, 8331–8340. [Google Scholar] [CrossRef] [Green Version]
- de Mattos Neto, P.S.; Cavalcanti, G.D.; Madeiro, F. Nonlinear combination method of forecasters applied to PM time series. Pattern Recognit. Lett. 2017, 95, 65–72. [Google Scholar] [CrossRef]
- Wu, L.; Gao, X.; Xiao, Y.; Liu, S.; Yang, Y. Using grey Holt—Winters model to predict the air quality index for cities in China. Nat. Hazards 2017, 88, 1003–1012. [Google Scholar] [CrossRef]
- Cha, J.; Kim, J. Development of Data Mining Algorithm for Implementation of Fine Dust Numerical Prediction Model. KIICE 2018, 22, 595–601. [Google Scholar]
- Jeon, S.; Son, Y.S. Prediction of fine dust PM10 using a deep neural network model. KJAS 2018, 31, 265–285. [Google Scholar]
- Xayasouk, T.; Lee, H.; Lee, G. Air Pollution Prediction Using Long Short-Term Memory (LSTM) and Deep Autoencoder (DAE) Models. Sustainability 2020, 12, 2570. [Google Scholar] [CrossRef] [Green Version]
- Guo, B.; Wang, X.; Pei, L.; Su, Y.; Zhang, D.; Wang, Y. Identifying the spatiotemporal dynamic of PM2.5 concentrations at multiple scales using geographically and temporally weighted regression model across China during 2015–2018. Sci. Total Environ. 2021, 751, 141765. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Li, Z.; Cheng, J.C.; Ding, Y.; Lin, C.; Xu, Z. Air quality prediction at new stations using spatially transferred bi-directional long short-term memory network. Sci. Total Environ. 2020, 705, 135771. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Du, P.; Hao, Y.; Ma, X.; Niu, T.; Yang, W. An innovative hybrid model based on outlier detection and correction algorithm and heuristic intelligent optimization algorithm for daily air quality index forecasting. J. Environ. Manag. 2020, 225, 109855. [Google Scholar] [CrossRef]
- Shabani, E.; Hayati, B.; Pishbahar, E.; Ghorbani, M.A.; Ghahremanzadeh, M. A novel approach to predict CO2 emission in the agriculture sector of Iran based on Inclusive Multiple Model. J. Clean. Prod. 2021, 279, 123708. [Google Scholar] [CrossRef]
- Jin, X.B.; Yang, N.X.; Wang, X.Y.; Bai, Y.T.; Su, T.L.; Kong, J.L. Deep Hybrid Model Based on EMD with Classification by Frequency Characteristics for Long-Term Air Quality Prediction. Mathematics 2020, 8, 214. [Google Scholar] [CrossRef] [Green Version]
- Pak, U.; Ma, J.; Ryu, U.; Ryom, K.; Juhyok, U.; Pak, K.; Pak, C. Deep learning-based PM2.5 prediction considering the spatiotemporal correlations: A case study of Beijing, China. Sci. Total Environ. 2020, 699, 133561. [Google Scholar] [CrossRef]
- Wen, C.; Liu, S.; Yao, X.; Peng, L.; Li, X.; Hu, Y.; Chi, T. A novel spatiotemporal convolutional long short-term neural network for air pollution prediction. Sci. Total Environ. 2019, 654, 1091–1099. [Google Scholar] [CrossRef]
Variable | Description |
---|---|
Observed time | Year, month, day, hour, and minutes |
AVOC-PM | PM value of AVOCs (µg/m3) |
AVOC-PM | PM value of AVOCs (µg/m3) |
AVOC-PM | PM value of AVOCs (µg/m3) |
AVOC-TC | Total count of particles related to AVOCs |
BVOC-PM | PM value of BVOCs (µg/m3) |
BVOC-PM | PM value of BVOCs (µg/m3) |
BVOC-PM | PM value of BVOCs (µg/m3) |
BVOC-TC | Total count of particles related to BVOCs |
Temperature | Temperature (°C) |
Humidity | Humidity (%) |
Direction | Wind direction (°) |
Speed | Wind speed (m/s) |
Method | LSTM | ANN | RF | Proposed Model |
---|---|---|---|---|
Recall | 0.829 | 0.828 | 0.767 | 0.821 |
Precision | 0.647 | 0.646 | 0.654 | 0.654 |
F1-score | 0.714 | 0.713 | 0.695 | 0.720 |
Method | LSTM | ANN | RF | Proposed Model |
---|---|---|---|---|
Recall | 0.814 | 0.882 | 0.793 | 0.860 |
Precision | 0.688 | 0.650 | 0.689 | 0.679 |
F1-score | 0.737 | 0.740 | 0.728 | 0.749 |
Method | LSTM | ANN | RF | Proposed Model |
---|---|---|---|---|
Recall | 0.821 | 0.888 | 0.806 | 0.857 |
Precision | 0.668 | 0.636 | 0.656 | 0.657 |
F1-score | 0.725 | 0.727 | 0.713 | 0.732 |
Method | LSTM | ANN | RF | Proposed Model |
---|---|---|---|---|
Recall | 0.832 | 0.795 | 0.776 | 0.818 |
Precision | 0.646 | 0.653 | 0.660 | 0.657 |
F1-score | 0.716 | 0.709 | 0.702 | 0.720 |
Method | LSTM | ANN | RF | Proposed Model |
---|---|---|---|---|
Recall | 0.824 | 0.848 | 0.786 | 0.839 |
Precision | 0.660 | 0.646 | 0.665 | 0.662 |
F1-score | 0.723 | 0.722 | 0.710 | 0.730 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, J.; Chang, S. A Particulate Matter Concentration Prediction Model Based on Long Short-Term Memory and an Artificial Neural Network. Int. J. Environ. Res. Public Health 2021, 18, 6801. https://doi.org/10.3390/ijerph18136801
Park J, Chang S. A Particulate Matter Concentration Prediction Model Based on Long Short-Term Memory and an Artificial Neural Network. International Journal of Environmental Research and Public Health. 2021; 18(13):6801. https://doi.org/10.3390/ijerph18136801
Chicago/Turabian StylePark, Junbeom, and Seongju Chang. 2021. "A Particulate Matter Concentration Prediction Model Based on Long Short-Term Memory and an Artificial Neural Network" International Journal of Environmental Research and Public Health 18, no. 13: 6801. https://doi.org/10.3390/ijerph18136801
APA StylePark, J., & Chang, S. (2021). A Particulate Matter Concentration Prediction Model Based on Long Short-Term Memory and an Artificial Neural Network. International Journal of Environmental Research and Public Health, 18(13), 6801. https://doi.org/10.3390/ijerph18136801