The Right Hemisphere Is Responsible for the Greatest Differences in Human Brain Response to High-Arousing Emotional versus Neutral Stimuli: A MEG Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overview
2.2. Participants
2.3. Stimuli and Design
2.4. MEG Acquisition and Processing
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Ahern, G.L.; Schwartz, G.E. Differential lateralization for positive versus negative emotion. Neuropsychologia 1979, 17, 693–698. [Google Scholar] [CrossRef]
- Borod, J.C.; Cicero, B.A.; Obler, L.K.; Welkowitz, J.; Erhan, H.M.; Santschi, C.; Grunwald, I.S.; Agosti, R.M.; Whalen, J.R. Right hemisphere emotional perception: Evidence across multiple channels. Neuropsychology 1998, 12, 446–458. [Google Scholar] [CrossRef] [PubMed]
- Gainotti, G. Emotional behavior and hemispheric side of the lesion. Cortex 1972, 8, 41–55. [Google Scholar] [CrossRef]
- Gainotti, G. Face familiarity feelings, the right temporal lobe and the possible underlying neural mechanisms. Brain Res. Rev. 2007, 56, 214–235. [Google Scholar] [CrossRef]
- Gainotti, G. Unconscious processing of emotions and the right hemisphere. Neuropsychologia 2012, 50, 205–218. [Google Scholar] [CrossRef] [PubMed]
- Gainotti, G. Is the difference between right and left ATLs due to the distinction between general and social cognition or between verbal and non-verbal representations? Neurosci. Biobehav. Rev. 2015, 51, 296–312. [Google Scholar] [CrossRef] [PubMed]
- Gainotti, G. Emotions and the Right Hemisphere: Can New Data Clarify Old Models? Neuroscientist 2019, 25, 258–270. [Google Scholar] [CrossRef]
- Gainotti, G. A historical review of investigations on laterality of emotions in the human brain. J. Hist. Neurosci. 2019, 28, 23–41. [Google Scholar] [CrossRef]
- Gainotti, G. The Role of the Right Hemisphere in Emotional and Behavioral Disorders of Patients With Frontotemporal Lobar Degeneration: An Updated Review. Front. Aging Neurosci. 2019, 11, 55. [Google Scholar] [CrossRef]
- Guntekin, B.; Basar, E. Emotional face expressions are differentiated with brain oscillations. Int. J. Psychophysiol. 2007, 64, 91–100. [Google Scholar] [CrossRef]
- Mandal, M.K.; Tandon, S.C.; Asthana, H.S. Right brain damage impairs recognition of negative emotions. Cortex 1991, 27, 247–253. [Google Scholar] [CrossRef]
- Gazzaniga, M.S.; Smylie, C.S. Facial recognition and brain asymmetries: Clues to underlying mechanisms. Ann. Neurol. 1983, 13, 536–540. [Google Scholar] [CrossRef]
- Sergent, J.; Bindra, D. Differential hemispheric processing of faces: Methodological considerations and reinterpretation. Psychol. Bull. 1981, 89, 541–554. [Google Scholar] [CrossRef]
- Werner, K.H.; Roberts, N.A.; Rosen, H.J.; Dean, D.L.; Kramer, J.H.; Weiner, M.W.; Miller, B.L.; Levenson, R.W. Emotional reactivity and emotion recognition in frontotemporal lobar degeneration. Neurology 2007, 69, 148–155. [Google Scholar] [CrossRef]
- Hécaen, H.; Reńe, A. La Cécité Psychique (Psychic Blindness); Masson Cie: Échandens, Switzerland, 1963. [Google Scholar]
- Diamond, M. Human sexual development: Biological foundations for social development. In Human Sexuality in Four Perspectives; Beach, F.A., Ed.; The Johns Hopkins University Press: Baltimore, MD, USA, 1977; pp. 22–61. [Google Scholar]
- Mandal, M.K.; Ambady, N. Laterality of facial expressions of emotion: Universal and culture-specific influences. Behav. Neurol. 2004, 15, 23–34. [Google Scholar] [CrossRef]
- Reuter-Lorenz, P.; Davidson, R.J. Differential contribution of the two cerebral hemispheres to the perception of happy and sad faces. Neuropsychologia 1981, 19, 609–613. [Google Scholar] [CrossRef]
- Rodway, P.; Wright, L.; Hardie, S. The valence-specific laterality effect in free viewing conditions: The influence of sex, handedness, and response bias. Brain Cogn. 2003, 53, 452–463. [Google Scholar] [CrossRef]
- Fusar-Poli, P.; Placentino, A.; Carletti, F.; Allen, P.; Landi, P.; Abbamonte, M.; Barale, F.; Perez, J.; McGuire, P.; Politi, P.L. Laterality effect on emotional faces processing: ALE meta-analysis of evidence. Neurosci. Lett. 2009, 452, 262–267. [Google Scholar] [CrossRef] [PubMed]
- Esslen, M.; Pascual-Marqui, R.D.; Hell, D.; Kochi, K.; Lehmann, D. Brain areas and time course of emotional processing. Neuroimage 2004, 21, 1189–1203. [Google Scholar] [CrossRef] [PubMed]
- Yuan, J.; Tian, Y.; Huang, X.; Fan, H.; Wei, X. Emotional bias varies with stimulus type, arousal and task setting: Meta-analytic evidences. Neurosci. Biobehav. Rev. 2019, 107, 461–472. [Google Scholar] [CrossRef]
- Wang, Z.; Wu, C.; Zheng, K.; Niu, X.; Wang, X. SMOTETomek-Based Resampling for Personality Recognition; IEEE Access: Piscataway, NJ, USA, 2019; Voloume 7, pp. 129678–129689. [Google Scholar]
- Efron, B.; Tibshirani, R.J. An Introduction to the Bootstrap; CRC Press: Boca Raton, FL, USA, 1994. [Google Scholar]
- Mooney, C.Z.; Mooney, C.F.; Mooney, C.L.; Duval, R.D.; Duvall, R. Bootstrapping: A Nonparametric Approach to Statistical Inference; SAGE: Newbury Park, CA, USA, 1993; Volume 95. [Google Scholar]
- Siniksaran, R. BootStrapPackage: A Package of Bootstrap Algorithms for Mean, Simple Linear Regression Models, and Correlation Coefficient. 2021. Available online: http://library.wolfram.com/infocenter/MathSource/815/ (accessed on 1 May 2021).
- Weisstein, E.W. Bootstrap Methods.From MathWorld—A Wolfram Web Resource. Available online: https://mathworld.wolfram.com/BootstrapMethods.html (accessed on 1 May 2021).
- Basiri, S.; Ollila, E.; Koivunen, V. Enhanced bootstrap method for statistical inference in the ICA model. Signal Process. 2017, 138, 53–62. [Google Scholar] [CrossRef]
- Calvetti, D.; Johnson, B.; Pascarella, A.; Pitolli, F.; Somersalo, E.; Vantaggi, B. Mining the Mind: Linear Discriminant Analysis of MEG source reconstruction time series supports dynamic changes in deep brain regions during meditation sessions. arXiv 2021, arXiv:2101.12559. [Google Scholar]
- Campopiano, A.; van Noordt, S.J.R.; Segalowitz, S.J. STATSLAB: An open-source EEG toolbox for computing single-subject effects using robust statistics. Behav. Brain Res. 2018, 347, 425–435. [Google Scholar] [CrossRef] [PubMed]
- Himmelberg, M.M.; Segala, F.G.; Maloney, R.T.; Harris, J.M.; Wade, A.R. Decoding Neural Responses to Motion-in-Depth Using EEG. Front. Neurosci. 2020, 14, 581706. [Google Scholar] [CrossRef] [PubMed]
- Hu, B.; Dong, Q.; Hao, Y.; Zhao, Q.; Shen, J.; Zheng, F. Effective brain network analysis with resting-state EEG data: A comparison between heroin abstinent and non-addicted subjects. J. Neural. Eng. 2017, 14, 046002. [Google Scholar] [CrossRef]
- Kheirkhah, M.; Baumbach, P.; Leistritz, L.; Brodoehl, S.; Götz, T.; Huonker, R.; Witte, O.W.; Klingner, C.M. The Temporal and Spatial Dynamics of Cortical Emotion Processing in Different Brain Frequencies as Assessed Using the Cluster-Based Permutation Test: An MEG Study. Brain Sci. 2020, 10, 352. [Google Scholar] [CrossRef]
- Kim, S.E.; Ba, D.; Brown, E.N. A Multitaper Frequency-Domain Bootstrap Method. IEEE Signal Process. Lett. 2018, 25, 1805–1809. [Google Scholar] [CrossRef] [PubMed]
- Martire, D.J.; Wong, S.; Workewych, A.; Pang, E.; Boutros, S.; Smith, M.L.; Ochi, A.; Otsubo, H.; Sharma, R.; Widjaja, E.; et al. Temporal-plus epilepsy in children: A connectomic analysis in magnetoencephalography. Epilepsia 2020, 61, 1691–1700. [Google Scholar] [CrossRef]
- Oya, H.; Kawasaki, H.; Howard, M.; Adolphs, R. Electrophysiological responses in the human amygdala discriminate emotion categories of complex visual stimuli. J. Neurosci. 2002, 22, 9502–9512. [Google Scholar] [CrossRef]
- Halchenko, Y.O.; Hanson, S.J.; Pearlmutter, B.A. Multimodal Integration: fMRI, MRI, EEG, MEG. Adv. Image Process. Magn. Reson. Imaging. 2005, 223–265. [Google Scholar]
- Hall, E.L.; Robson, S.E.; Morris, P.G.; Brookes, M.J. The relationship between MEG and fMRI. Neuroimage 2014, 102, 80–91. [Google Scholar] [CrossRef]
- Lystad, R.P.; Pollard, H. Functional neuroimaging: A brief overview and feasibility for use in chiropractic research. J. Can. Chiropr. Assoc. 2009, 53, 59–72. [Google Scholar]
- Malmivuo, J. Comparison of the properties of EEG and MEG in detecting the electric activity of the brain. Brain Topogr 2012, 25, 1–19. [Google Scholar] [CrossRef]
- Cuthbert, B.N.; Schupp, H.T.; Bradley, M.M.; Birbaumer, N.; Lang, P.J. Brain potentials in affective picture processing: Covariation with autonomic arousal and affective report. Biol. Psychol. 2000, 52, 95–111. [Google Scholar] [CrossRef]
- Kheirkhah, M.; Brodoehl, S.; Leistritz, L.; Götz, T.; Baumbach, P.; Huonker, R.; Witte, O.W.; Klingner, C.M. Automated emotion classification in the early stages of cortical processing: An MEG study. Artif. Intell. Med. 2021, 115, 102063. [Google Scholar] [CrossRef] [PubMed]
- Olofsson, J.K.; Nordin, S.; Sequeira, H.; Polich, J. Affective picture processing: An integrative review of ERP findings. Biol. Psychol. 2008, 77, 247–265. [Google Scholar] [CrossRef]
- Radilova, J. The Late Positive Component of Visual Evoked-Response Sensitive to Emotional Factors. Act. Nerv. Super. 1982, 334–337. [Google Scholar]
- Radilova, J. P300 and Emotional States Studied by Psychophysiological Methods. Int. J. Psychophysiol. 1989, 7, 364–366. [Google Scholar] [CrossRef]
- Radilova, J.; Figar, S.; Radil, T. Sexual Arousal and Visual-Perception. Act. Nerv. Super. 1983, 25, 168–170. [Google Scholar]
- Lang, P.J.B.; Margaret, M.; Cuthbert, B.N. International affective picture system (IAPS): Technical manual and affective ratings. NIMH Cent. Study Emot. Atten. 1997, 1, 39–58. [Google Scholar]
- Lang, P. Behavioral treatment and bio-behavioral assessment: Computer applications. Technol. Ment. Health Care Deliv. Syst. 1980, 119–137. [Google Scholar]
- Taulu, S.; Simola, J. Spatiotemporal signal space separation method for rejecting nearby interference in MEG measurements. Phys. Med. Biol. 2006, 51, 1759–1768. [Google Scholar] [CrossRef] [PubMed]
- Oostenveld, R.; Fries, P.; Maris, E.; Schoffelen, J.M. FieldTrip: Open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data. Comput. Intell. Neurosci. 2011, 2011, 156869. [Google Scholar] [CrossRef]
- Abadi, M.K.; Subramanian, R.; Kia, S.M.; Avesani, P.; Patras, I.; Sebe, N. DECAF: MEG-Based Multimodal Database for Decoding Affective Physiological Responses. IEEE Trans. Affect. Comput. 2015, 6, 209–222. [Google Scholar] [CrossRef]
- Hauk, O. Vectorview Description—Meg Wiki, Elekta Neuromag Vectorview Syst. 2013. Available online: http://imaging.mrc-cbu.cam.ac.uk/meg/VectorviewDescription (accessed on 1 April 2021).
- Hu, Y.; Yin, C.; Zhang, J.; Wang, Y. Partial Least Square Aided Beamforming Algorithm in Magnetoencephalography Source Imaging. Front. Neurosci. 2018, 12, 616. [Google Scholar] [CrossRef] [PubMed]
- Kheirkhah, M.; Brodoehl, S.; Leistritz, L.; Götz, T.; Baumbach, P.; Huonker, R.; Witte, O.W.; Volk, G.F.; Guntinas-Lichius, O.; Klingner, C.M. Abnormal Emotional Processing and Emotional Experience in Patients with Peripheral Facial Nerve Paralysis: An MEG Study. Brain Sci. 2020, 10, 147. [Google Scholar] [CrossRef]
- Lopez, M.E.; Garcés, P.; Cuesta, P.; Castellanos, N.; Aurtenetxe, S.; Bajo, R.; Marcos, A.; Montenegro, M.; Yubero, R.; Del Pozo, F.; et al. Synchronization during an internally directed cognitive state in healthy aging and mild cognitive impairment: A MEG study. Age 2014, 36, 9643. [Google Scholar] [CrossRef] [PubMed]
- Wittling, W.; Roschmann, R. Emotion-Related Hemisphere Asymmetry: Subjective Emotional Responses to Laterally Presented Films. Cortex 1993, 29, 431–448. [Google Scholar] [CrossRef]
- Aldhafeeri, F.M.; Mackenzie, I.; Kay, T.; Alghamdi, J.; Sluming, V. Regional brain responses to pleasant and unpleasant IAPS pictures: Different networks. Neurosci. Lett. 2012, 512, 94–98. [Google Scholar] [CrossRef] [PubMed]
- Amaral, D.G. The amygdala, social behavior, and danger detection. Emot. Inside Out 2003, 1000, 337–347. [Google Scholar] [CrossRef]
- Dellacherie, D.; Hasboun, D.; Baulac, M.; Belin, P.; Samson, S. Impaired recognition of fear in voices and reduced anxiety after unilateral temporal lobe resection. Neuropsychologia 2011, 49, 618–629. [Google Scholar] [CrossRef]
- Dolcos, F.; LaBar, K.S.; Cabeza, R. Dissociable effects of arousal and valence on prefrontal activity indexing emotional evaluation and subsequent memory: An event-related fMRI study. Neuroimage 2004, 23, 64–74. [Google Scholar] [CrossRef] [PubMed]
- Horton, P.C. Positive emotions and the right parietal cortex. Psychiatr. Clin. N. Am. 1988, 11, 461–474. [Google Scholar] [CrossRef]
- Lettieri, G.; Handjaras, G.; Ricciardi, E.; Leo, A.; Papale, P.; Betta, M.; Pietrini, P.; Cecchetti, L. Emotionotopy in the human right temporo-parietal cortex. Nat. Commun. 2019, 10, 5568. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Japee, S.; Stacy, A.; Flessert, M.; Ungerleider, L.G. Anterior superior temporal sulcus is specialized for non-rigid facial motion in both monkeys and humans. Neuroimage 2020, 218, 116878. [Google Scholar] [CrossRef]
- Junghofer, M.; Sabatinelli, D.; Bradley, M.M.; Schupp, H.T.; Elbert, T.R.; Lang, P.J. Fleeting images: Rapid affect discrimination in the visual cortex. Neuroreport 2006, 17, 225–229. [Google Scholar] [CrossRef]
- Sabatinelli, D.; Bradley, M.M.; Fitzsimmons, J.R.; Lang, P.J. Parallel amygdala and inferotemporal activation reflect emotional intensity and fear relevance. Neuroimage 2005, 24, 1265–1270. [Google Scholar] [CrossRef] [PubMed]
- Hagan, C.C.; Woods, W.; Johnson, S.; Calder, A.J.; Green, G.; Young, A.W. MEG demonstrates a supra-additive response to facial and vocal emotion in the right superior temporal sulcus. Proc. Natl. Acad. Sci. USA 2009, 106, 20010–20015. [Google Scholar] [CrossRef] [PubMed]
- Styliadis, C.; Ioannides, A.A.; Bamidis, P.D.; Papadelis, C. Mapping the Spatiotemporal Evolution of Emotional Processing: An MEG Study Across Arousal and Valence Dimensions. Front. Hum. Neurosci. 2018, 12, 322. [Google Scholar] [CrossRef]
- Chen, Y.H.; Dammers, J.; Boers, F.; Leiberg, S.; Edgar, J.C.; Roberts, T.; Mathiak, K. The temporal dynamics of insula activity to disgust and happy facial expressions: A magnetoencephalography study. Neuroimage 2009, 47, 1921–1928. [Google Scholar] [CrossRef]
- Craig, A.D. How do you feel? Interoception: The sense of the physiological condition of the body. Nat. Rev. Neurosci. 2002, 3, 655–666. [Google Scholar] [CrossRef]
- Critchley, H.D.; Wiens, S.; Rotshtein, P.; Öhman, A.; Dolan, R. Neural systems supporting interoceptive awareness. Nat. Neurosci. 2004, 7, 189–195. [Google Scholar] [CrossRef] [PubMed]
- Morris, J.S.; Ohman, A.; Dolan, R.J. Conscious and unconscious emotional learning in the human amygdala. Nature 1998, 393, 467–470. [Google Scholar] [CrossRef] [PubMed]
- Morris, J.S.; Ohman, A.; Dolan, R.J. A subcortical pathway to the right amygdala mediating “unseen” fear. Proc. Natl. Acad. Sci. USA 1999, 96, 1680–1685. [Google Scholar] [CrossRef] [PubMed]
- Keil, A.; Müller, M.M.; Gruber, T.; Wienbruch, C.; Stolarova, M.; Elbert, T. Effects of emotional arousal in the cerebral hemispheres: A study of oscillatory brain activity and event-related potentials. Clin. Neurophysiol. 2001, 112, 2057–2068. [Google Scholar] [CrossRef]
- Moratti, S.; Strange, B.; Rubio, G. Emotional arousal modulation of right temporoparietal cortex in depression depends on parental depression status in women: First evidence. J. Affect. Disord. 2015, 178, 79–87. [Google Scholar] [CrossRef]
- Güntekin, B.; Femir, B.; Gölbaşı, B.T.; Tülay, E.; Başar, E. Affective pictures processing is reflected by an increased long-distance EEG connectivity. Cogn. Neurodynamics 2017, 11, 355–367. [Google Scholar] [CrossRef]
- Duma, G.M.; Mento, G.; Semenzato, L.; Tressoldi, P.E. EEG anticipation of random high and low arousal faces and sounds. F1000Research 2019, 8, 1508. [Google Scholar] [CrossRef]
- Smith, S.D.; McIver, T.A.; Di Nella, M.S.J.; Crease, M.L. The effects of valence and arousal on the emotional modulation of time perception: Evidence for multiple stages of processing. Emotion 2011, 11, 1305–1313. [Google Scholar] [CrossRef]
Sensors | Repetition across Participants | Participants | 95% CI | |
---|---|---|---|---|
Pleasant vs. neutral | 41 | 16 | 1 *, 2, 4 *, 5, 6 *, 7 *, 8, 9, 10 *, 11, 12 *, 13 *, 14 *, 15 *, 16*, 17 | 7143 (2277, 10,576) |
47 | 17 | 1, 2 *, 3 *, 4 *, 5 *, 6 *, 7 *, 8, 9, 10 *, 11 *, 12 *, 13 *, 14 *, 15, 16, 17 | 7857 (2883, 12,228) | |
48 | 17 | 1, 2 *, 3 *, 4 *, 5 *, 6 *, 7 *, 8, 9, 10 *, 11 *, 12 *, 13, 14 *, 15 *, 16, 17 | 8726 (4669, 14,635) | |
49 | 17 | 1, 2 *, 3 *, 4 *, 5 *, 6 *, 7, 8, 9, 10 *, 11 *, 12, 13, 14 *, 15 *, 16, 17 | 9483 (4344, 14,236) | |
50 | 17 | 1 *, 2 *, 3 *, 4, 5 *, 6 *, 7, 8, 9, 10 *, 11 *, 12, 13, 14 *, 15 *, 16, 17 | 7654 (2897, 11,358) | |
84 | 14 | 1 *, 3 *, 4 *, 5, 6, 7, 9, 10, 11 *, 13, 14, 15, 16 *, 17 | 7910 (5154, 11,628) | |
91 | 15 | 1 *, 2, 3 *, 4 *, 5 *, 6 *, 7, 10 *, 11 *, 12, 13 *, 14 *, 15, 16, 17 * | 7910 (5154, 11,628) | |
Unpleasant vs. neutral | 48 | 16 | 1, 2, 3 *, 4 *, 5, 6, 7, 8, 9 *, 10, 11 *, 12, 13, 14, 16 *, 17 | 8726 (4669, 14,635) |
49 | 16 | 1, 2, 3 *, 4 *, 5, 6, 7, 8, 9 *, 10, 11 *, 13, 14 *, 15 *, 16 *, 17 | 9483 (4344, 14,236) | |
84 | 16 | 1, 2 *, 3 *, 4, 5, 6, 7, 8, 9, 11 *, 12, 13, 14 *, 15 *, 16 *, 17 | 7654 (2897, 11,358) | |
91 | 17 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 *, 12, 13 *, 14*, 15 *, 16 *, 17 | 7910 (5154, 11,628) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial (CC BY-NC) license (https://creativecommons.org/licenses/by-nc/4.0/).
Share and Cite
Kheirkhah, M.; Baumbach, P.; Leistritz, L.; Witte, O.W.; Walter, M.; Gilbert, J.R.; Zarate Jr., C.A.; Klingner, C.M. The Right Hemisphere Is Responsible for the Greatest Differences in Human Brain Response to High-Arousing Emotional versus Neutral Stimuli: A MEG Study. Brain Sci. 2021, 11, 960. https://doi.org/10.3390/brainsci11080960
Kheirkhah M, Baumbach P, Leistritz L, Witte OW, Walter M, Gilbert JR, Zarate Jr. CA, Klingner CM. The Right Hemisphere Is Responsible for the Greatest Differences in Human Brain Response to High-Arousing Emotional versus Neutral Stimuli: A MEG Study. Brain Sciences. 2021; 11(8):960. https://doi.org/10.3390/brainsci11080960
Chicago/Turabian StyleKheirkhah, Mina, Philipp Baumbach, Lutz Leistritz, Otto W. Witte, Martin Walter, Jessica R. Gilbert, Carlos A. Zarate Jr., and Carsten M. Klingner. 2021. "The Right Hemisphere Is Responsible for the Greatest Differences in Human Brain Response to High-Arousing Emotional versus Neutral Stimuli: A MEG Study" Brain Sciences 11, no. 8: 960. https://doi.org/10.3390/brainsci11080960
APA StyleKheirkhah, M., Baumbach, P., Leistritz, L., Witte, O. W., Walter, M., Gilbert, J. R., Zarate Jr., C. A., & Klingner, C. M. (2021). The Right Hemisphere Is Responsible for the Greatest Differences in Human Brain Response to High-Arousing Emotional versus Neutral Stimuli: A MEG Study. Brain Sciences, 11(8), 960. https://doi.org/10.3390/brainsci11080960