The Effects of Cultivating Tobacco and Supplying Nitrogenous Fertilizers on Micronutrients Extractability in Loamy Sand and Sandy Soils
Abstract
:1. Introduction
2. Results
2.1. Soil Properties before the Establishment of Trials
2.2. The Effect of Tobacco Cultivation and Fertilizer Application on Soil Micronutrients
2.3. The Effect of Fertilization with NPK and CAN on Micronutrient Concentrations in Tobacco Leaves
2.4. The Relationship between Nicotine Contents in Soil and Micronutrients
3. Discussion
Conclusions
4. Materials and Methods
4.1. Description of the Study Areas and Location
4.2. Experimental Design, Treatments and Experimentation
4.3. Data Collection from Soil and Tobacco Plants
4.4. Statistical Analyses
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Charlton, A. Medicinal uses of tobacco in history. J. R. Soc. Med. 2004, 97, 292–296. [Google Scholar] [CrossRef] [PubMed]
- Schäfer, B. Nicotin: Nicotin und die Neonicotinoide I. Chem. Unserer Zeit 2008, 42, 330–344. [Google Scholar] [CrossRef]
- Anand, A.; Sk, M.I.K. The risk of hypertension and other chronic diseases. Comparing smokeless tobacco with smoking. Front. Public Health 2017, 5, 255. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luijckx, E.; Lohse, T.; Faeh, D.; Rohrmann, S. Joints effects of BMI and smoking on mortality of all-causes, CVD, and cancer. Cancer Causes Control 2019, 30, 549–557. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; He, J.; He, B.; Huang, R.; Li, M. Effect of tobacco on periodontal disease and oral cancer. Tob. Induc. Dis. 2019, 17, 40. [Google Scholar] [CrossRef]
- Lisuma, J.B.; Mbega, E.R.; Ndakidemi, P.A. Dynamics of nicotine across the soil–tobacco plant interface is dependent on agro-ecology, nitrogen source, and rooting depth. Rhizosphere 2019, 12, 100175. [Google Scholar] [CrossRef]
- Lisuma, J.B.; Mbega, E.R.; Ndakidemi, P.A. Influence of Nicotine Released in Soils to the Growth of Subsequent Maize Crop, Soil Bacteria and Fungi. Int. J. Agric. Biol. 2019, 22, 1–12. [Google Scholar]
- Farooq, M.; Husssain, T.; Wakeel, A.; Cheema, Z.A. Differential response of maize and mungbean to tobacco allelopathy. Exp. Agric. 2014, 50, 611–624. [Google Scholar] [CrossRef]
- Moula, M.S.; Hossain, M.S.; Farazi, M.M.; Ali, M.H.; Mamun, M.A.A. Effects of consecutive two years tobacco cultivation on soil fertility status at Bheramara Upazilla in Kushtia District. J. Rice Res. 2018, 6, 190. [Google Scholar]
- Lisuma, J.; Mbega, E.; Ndakidemi, P. Influence of Tobacco Plant on Macronutrient Levels in Sandy Soils. Agronomy 2020, 10, 418. [Google Scholar] [CrossRef] [Green Version]
- Hoyos, V.C.; Magnitskiy, S.; Plaza, G.T. Effect of fertilization on the contents of macronutrients and chlorine in tobacco leaves cv. flue-cured (Nicotiana tabacum L.) in two municipalities in Huila, Colombia. Agron. Colomb. 2015, 33, 174–183. [Google Scholar] [CrossRef]
- López-Lefebre, L.R.; Rivero, R.M.; García, P.C.; Sanchez, E.; Ruiz, J.M.; Romero, L. Effect of calcium on mineral nutrient uptake and growth of tobacco. J. Sci. Food Agric. 2001, 81, 1334–1338. [Google Scholar] [CrossRef]
- Tirani, M.M.; Haghjou, M.; Sulieman, S.; Ismaili, A. Comparative Evaluation of Zinc Oxide Effects on Tobacco (Nicotiana tabacum L.) Grown in Different Media. J. Agric. Sci. Technol. 2018, 20, 787–802. [Google Scholar]
- Haque, S.A.; Canete, S.J.P. Facilitated tobacco-specific nitrosamine formation from nicotine in the presence of Cu2+ ions. Ind. Crops Prod. 2018, 122, 493–497. [Google Scholar] [CrossRef]
- Terry, N.; Abadía, J. Function of iron in chloroplasts. J. Plant Nutr. 1986, 9, 609–646. [Google Scholar] [CrossRef] [Green Version]
- Henry, J.B.; Vann, M.; McCall, L.; Cockson, P.; Whipker, B.E. Nutrient Disorders of Burley and Flue-Cured Tobacco: Part 2—Micronutrient Deficiencies. Crop Forage Turfgrass Manag. 2018, 4, 1–8. [Google Scholar] [CrossRef]
- Livorness, J.; Smith, T.D. The role of manganese in photosynthesis. In Biochemistry; Springer: Berlin/Heidelberg, Germany, 1982; pp. 1–44. [Google Scholar]
- Huber, D.M.; Wilhelm, N.S. The role of manganese in resistance to plant diseases. In Manganese in Soils and Plants; Springer: Dordrecht, The Netherlands, 1988; pp. 155–173. [Google Scholar]
- Candan, N.; Tarhan, L. Changes in Chlorophyll-Carotenoid Contents, Antioxidant Enzyme Activities and Lipid Peroxidation Levels in Zn-Stressed Mentha pulegium. Turk. J. Chem. 2003, 27, 21–30. [Google Scholar]
- González, Á.; Chumillas, V.; del Carmen Lobo, M. Effect of Zn, Cd and Cr on Growth, Water Status and Chlorophyll Content of Barley Plants (H. vulgare L.). Agric. Sci. 2012, 3, 572–581. [Google Scholar]
- Landon, J.R. Booker Tropical Soil Manual. In A Handbook for Soil Survey and Agricultural Land Evaluation in the Tropics and Subtropics; John Wiley & Sons, Incorporation: New York, NY, USA, 1991; p. 474. [Google Scholar]
- Fässler, E.; Robinson, B.H.; Gupta, S.K.; Schulin, R. Uptake and allocation of plant nutrients and Cd in maize, sunflower and tobacco growing on contaminated soil and the effect of soil conditioners under field conditions. Nutr. Cycl. Agroecosyst. 2010, 87, 339–352. [Google Scholar] [CrossRef] [Green Version]
- Steiner, F.; do Carmo Lana, M. Effect of pH on boron adsorption in some soils of Paraná, Brazil. Chil. J. Agric. Res. 2013, 73, 181–186. [Google Scholar] [CrossRef] [Green Version]
- Giller, K.E. Nitrogen Fixation in Tropical Cropping Systems, 2nd ed.; CAB International: Wallingford, UK, 2001. [Google Scholar]
- Bryson, G.; Mills, H. Plant Analysis Handbook IV; Micro-Macro Publishing: Athens, GA, USA, 2014. [Google Scholar]
- Rengel, Z. Availability of Mn, Zn and Fe in the rhizosphere. J. Soil Sci. Plant Nutr. 2015, 15, 397–409. [Google Scholar] [CrossRef] [Green Version]
- Rengel, Z. Uptake and transport of manganese in plants. In Metal Ions in Biological Systems; Sigel, A., Sigel, H., Eds.; Marcel Dekker: New York, NY, USA, 2000; pp. 57–87. [Google Scholar]
- Porter, G.S.; Bajita-Locke, J.B.; Hue, N.V.; Strand, D. Manganese solubility and phytotoxicity affected by soil moisture, oxygen levels, and green manure additions. Commun. Soil Sci. Plant Anal. 2004, 35, 99–116. [Google Scholar] [CrossRef]
- Sparrow, L.A.; Uren, N.C. Manganese oxidation and reduction in soils: Effects of temperature, water potential, pH and their interactions. Soil Res. 2014, 52, 483–494. [Google Scholar] [CrossRef]
- Golia, E.E.; Dimirkou, A.T.; Mitsios, I.K. Heavy-Metal Concentration in Tobacco Leaves in Relation to Their Available Soil Fractions. Commun. Soil Sci. Plant Anal. 2009, 40, 106–120. [Google Scholar] [CrossRef]
- Zeng, W.; Zeng, M.; Zhou, H.; Li, H.; Xu, Q.; Li, F. The effects of soil pH on tobacco growth. J. Chem. Pharm. Res. 2014, 6, 452–457. [Google Scholar]
- Ali, F.; Tariq, M.; Ali, A.; Shah, S.N.M.; Ahmed, A. Arifullah (2014) Effect of different rates of boron on the yield, quality and micronutrients content of tobacco (Nicotiana tabacum L.). Int. J. Farming Allied Sci. 2014, 3, 1165–1173. [Google Scholar]
- Moberg, J.R. Soil and Plant Analysis Manual; The Royal Veterinary and Agricultural University, Chemistry Department: Copenhagen, Denmark, 2000. [Google Scholar]
- Malathi, P.; Stalin, P. Evaluation of AB—DTPA Extractant for Multinutrients Extraction in Soils. Int. J. Curr. Microbiol. Appl. Sci. 2018, 7, 1192–1205. [Google Scholar] [CrossRef]
Site: | Boron (mg kg−1) | Copper (mg kg−1) | Iron (mg kg−1) | Manganese (mg kg−1) | Zinc (mg kg−1) |
---|---|---|---|---|---|
Sikonge | 0.33 ± 0.01 a | 0.24 ± 0.01 c | 22.43 ± 2.10 a | 29.28 ± 1.26 b | 0.58 ± 0.06 a |
Tabora | 0.22 ± 0.02 c | 0.31 ± 0.04 a | 22.31 ± 2.41 a | 18.79 ± 1.73 c | 0.32 ± 0.06 b |
Urambo | 0.28 ± 0.01 b | 0.29 ± 0.01 b | 21.38 ± 2.03 b | 31.21 ± 1.79 a | 0.38 ± 0.01 b |
Treatment: | |||||
Soil before tobacco cultivation † | 0.32 ± 0.00 a | 0.20 ± 0.02 c | 13.60 ± 0.24 c | 20.10 ± 2.05 c | 0.32 ± 0.05 c |
Soil after tobacco–unfertilized | 0.28 ± 0.02 b | 0.30 ± 0.02 b | 24.63 ± 0.24 b | 29.24 ± 1.96 b | 0.40 ± 0.00 b |
Soil after tobacco–fertilized | 0.24 ± 0.02 c | 0.34 ± 0.02 a | 27.89 ± 0.57 a | 29.93 ± 1.84 a | 0.56 ± 0.07 a |
2-Way ANOVA F Statistic: | |||||
Site (S) | 133.93 *** | 35.49 *** | 4.10 * | 1461.21 *** | 24.77 *** |
Treatment (T) | 69.43 *** | 118.53 *** | 696.15 *** | 985.93 *** | 21.37 *** |
S × T | 19.90 *** | 43.50 *** | 4.51 ** | 12.44 *** | 5.13 ** |
B (mg kg−1) | Cu (mg kg−1) | Fe (mg kg−1) | Mn (mg kg−1) | Zn (mg kg−1) | |
---|---|---|---|---|---|
Site | |||||
Sikonge | 15.58 ± 0.39 a | 8.71 ± 0.24 b | 139.68 ± 1.17 b | 102.55 ± 1.10 c | 13.64 ± 0.19 b |
Tabora | 13.93 ± 0.32 b | 8.71 ± 0.24 b | 232.40 ± 0.39 a | 233.36 ± 1.11 a | 17.94 ± 0.26 a |
Urambo | 14.60 ± 0.35 b | 12.03 ± 0.07 a | 139.27 ± 8.96 b | 220.98 ± 0.75 b | 13.53 ± 0.18 b |
Treatments | |||||
Unfertilized tobacco | 14.08 ± 0.27 b | 9.41 ± 0.62 b | 165.58 ± 16.55 a | 180.17 ± 20.01 b | 14.61 ± 0.74 b |
Fertilized tobacco | 15.33 ± 0.32 a | 10.22 ± 0.49 a | 175.32 ± 15.29 a | 184.43 ± 19.86 a | 15.45 ± 0.72 a |
Two-Way ANOVA F-statistics | |||||
Site (S) | 13.09 *** | 4500.60 *** | 124.846 *** | 74594.00 *** | 457.59 *** |
Treatment (T) | 22.09 *** | 608.50 *** | 3.086ns | 213.00 *** | 38.31 *** |
S × T | 1.18ns | 63.90 *** | 1.335ns | 4.00 * | 0.00ns |
Fitted Parameters | Coefficients | Standard Error | T-Statistic | P-Value | Lower 95% | Upper 95% |
---|---|---|---|---|---|---|
Intercept | 95.42434313 | 34.90534505 | 2.733803175 | 0.021055512 | 17.65038767 | 173.1982986 |
B (mg kg−1) | 95.58563717 | 41.95593708 | 2.278238643 | 0.045923021 | 2.101983691 | 189.0692906 |
Cu (mg kg−1) | 64.92308337 | 27.71679316 | 2.342373556 | 0.041172614 | 3.166219676 | 126.6799471 |
Fe (mg kg−1) | 0.475368305 | 0.252771336 | 1.880625838 | 0.089431575 | −0.087841329 | 1.038577938 |
Mn(mg kg−1) | −0.203960288 | 0.126413294 | −1.613440181 | 0.13772393 | −0.485626661 | 0.077706084 |
Zn (mg kg−1) | −9.339325774 | 7.857166985 | −1.188637812 | 0.262043109 | −26.8461848 | 8.167533251 |
OC (%) | 41.11614161 | 15.0755355 | 2.727342032 | 0.02129032 | 7.525755258 | 74.70652796 |
Soil pH | −25.88681638 | 8.139113946 | −3.180544781 | 0.00981037 | −44.02189238 | −7.751740375 |
Response Variable | Explanatory Variables | ||||||
---|---|---|---|---|---|---|---|
B | Cu | Fe | Mn | Zn | SOC | Soil pH | |
Nicotine | −0.47 | 0.52 | 0.88 | 0.44 | 0.74 | −0.06 | −0.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lisuma, J.B.; Mbega, E.R.; Ndakidemi, P.A. The Effects of Cultivating Tobacco and Supplying Nitrogenous Fertilizers on Micronutrients Extractability in Loamy Sand and Sandy Soils. Plants 2021, 10, 1597. https://doi.org/10.3390/plants10081597
Lisuma JB, Mbega ER, Ndakidemi PA. The Effects of Cultivating Tobacco and Supplying Nitrogenous Fertilizers on Micronutrients Extractability in Loamy Sand and Sandy Soils. Plants. 2021; 10(8):1597. https://doi.org/10.3390/plants10081597
Chicago/Turabian StyleLisuma, Jacob B., Ernest R. Mbega, and Patrick A. Ndakidemi. 2021. "The Effects of Cultivating Tobacco and Supplying Nitrogenous Fertilizers on Micronutrients Extractability in Loamy Sand and Sandy Soils" Plants 10, no. 8: 1597. https://doi.org/10.3390/plants10081597
APA StyleLisuma, J. B., Mbega, E. R., & Ndakidemi, P. A. (2021). The Effects of Cultivating Tobacco and Supplying Nitrogenous Fertilizers on Micronutrients Extractability in Loamy Sand and Sandy Soils. Plants, 10(8), 1597. https://doi.org/10.3390/plants10081597