Stinging Nettle (Urtica dioica L.) as a Functional Component in Durum Wheat Pasta Production: Impact on Chemical Composition, In Vitro Glycemic Index, and Quality Properties
Abstract
:1. Introduction
2. Results and Discussion
2.1. Pasta Processing
2.2. Basic Chemical Analysis
2.3. Determination of Calcium, Iron, Potassium Magnesium, and Phosphorus Concentration
2.4. Determination of the Chlorophyll and Carotenoid Content
2.5. Cooking Quality
2.6. Determination of Glycemic Index (GI) In Vitro
2.7. Sensory Quality
3. Material and Methods
3.1. Characteristics of Raw Materials
3.2. Pasta Preparation
3.3. Basic Chemical Analysis
3.4. Determination of Calcium, Iron, Potassium, Magnesium, and Phosphorus Concentration
3.4.1. Calcium, Iron, Potassium, Magnesium, and Silicone Concentration
3.4.2. Phosphorus Concentration
3.5. Determination of the Chlorophyll and Carotenoid Content
- chl a = 12.72·A663 − 2.59·A645
- chl b = 22.88·A645 − 4.67·A663
- car = (1000·A470 − 3.27·chl a − 104·chl b)/229
- and expressed in μg·g−1 d.m.
3.6. Cooking Quality of Pasta Samples
3.7. Determination of In Vitro Glycemic Index (GI)
3.8. Sensory Quality
3.9. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Jakubczyk, K.; Janda, K.; Szkyrpan, S.; Gutowska, I.; Wolska, J. Stinging nettle (Urtica dioica L.)-botanical characteristics, biochemical composition and health benefits. Pomeranian J. Life Sci. 2015, 61, 191–198. [Google Scholar] [CrossRef] [PubMed]
- Kregiel, D.; Pawlikowska, E.; Antolak, H. Urtica spp.: Ordinary plants with extraordinary properties. Molecules 2018, 23, 1664. [Google Scholar] [CrossRef] [Green Version]
- Upton, R. Stinging nettles leaf (Urtica dioica L.): Extraordinary vegetable medicine. J. Herb. Med. 2013, 3, 9–38. [Google Scholar] [CrossRef]
- Đurović, S.; Pavlić, B.; Šorgić, S.; Popov, S.; Savić, S.; Pertonijević, M.; Radojković, M.; Cvetanović, A.; Zeković, Z. Chemical composition of stinging nettle leaves obtained by different analytical approaches. J. Funct. Foods 2017, 32, 18–26. [Google Scholar] [CrossRef]
- Johnson, T.A.; Sohn, J.; Inman, W.D.; Bjeldanes, L.F.; Rayburn, K. Lipophilic stinging nettle extracts possess potent anti-inflammatory activity, are not cytotoxic and may be superior to traditional tinctures for treating inflammatory disorders. Phytomedicine 2013, 20, 143–147. [Google Scholar] [CrossRef] [Green Version]
- Krawȩcka, A.; Sobota, A.; Sykut-Domańska, E. Functional Cereal Products in the Diet for Type 2 Diabetes Patients. Int. J. Food Sci. 2019, Volume 2019, 4012450. [Google Scholar] [CrossRef]
- Đurović, S.; Vujanović, M.; Radojković, M.; Filipović, J.; Filipović, V.; Gašić, U.; Tešić, Ž.; Mašković, P.; Zeković, Z. The functional food production: Application of stinging nettle leaves and its extracts in the baking of a bread. Food Chem. 2020, 312, 126091. [Google Scholar] [CrossRef] [PubMed]
- Man, S.; Păucean, A.; Chiş, M.; Muste, S.; Pop, A.; Mureșan, A.; Martis, G. Effect of nettle leaves powder (Urtica dioica L.) addition on the quality of bread. J. Herb. Med. 2019, 27, 104–112. [Google Scholar]
- Wójcik, M.; Dziki, D.; Gawlik-Dziki, U.; Różyło, R. Development of no-salt herbal bread using a method based on scalded flour. LWT Food Sci. Technol. 2021, 145, 111329. [Google Scholar] [CrossRef]
- Fiol, C.; Prado, D.; Mora, M.; Alava, J.I. Nettle cheese: Using nettle leaves (Urtica dioica) to coagulate milk in the fresh cheese making process. Int. J. Gastron. Food Sci. 2016, 4, 19–24. [Google Scholar] [CrossRef] [Green Version]
- Belščak-Cvitanović, A.; Komes, D.; Durgo, K.; Vojvodić, A.; Bušić, A. Nettle (Urtica dioica L.) extracts as functional ingredients for production of chocolates with improved bioactive composition and sensory properties. J. Food Sci. Technol. 2015, 52, 7723–7734. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rutakhli, A.; Sabahi, H.; Riazi, G.H. Nanocomposite of montmorillonite/nettle extract: A potential ingredient for functional foods development. J. Funct. Foods 2019, 57, 166–172. [Google Scholar] [CrossRef]
- Delfanian, M.; Sahari, M.A. Improving functionality, bioavailability, nutraceutical and sensory attributes of fortified foods using phenolics-loaded nanocarriers as natural ingredients. Food Res. Int. 2020, 137, 109555. [Google Scholar] [CrossRef] [PubMed]
- Sobota, A.; Wirkijowska, A.; Zarzycki, P. Application of vegetable concentrates and powders in coloured pasta production. Int. J. Food Sci. Technol. 2020, 55, 2677–2687. [Google Scholar] [CrossRef]
- Manzoor, M.; Singh, J.; Gani, A.; Noor, N. Valorization of natural colors as health-promoting bioactive compounds: Phytochemical profile, extraction techniques, and pharmacological perspectives. Food Chem. 2021, 362, 130141. [Google Scholar] [CrossRef] [PubMed]
- Alemayehu, D.; Gulelat, D.; Kebede, A.; Beruk, D.; Dereje, G. Proximate, Mineral Composition and Sensory Acceptability of Home Made Noodles from Stinging Nettle (Urtica simensis) Leaves and Wheat Flour Blends. Int. J. Food Sci. Nutr. Eng. 2016, 6, 55–61. [Google Scholar]
- Nawrocka, A.; Krekora, M.; Niewiadomski, Z.; Szymańska-Chargot, M.; Krawęcka, A.; Sobota, A.; Miś, A. Effect of moisturizing pre-treatment of dietary fibre preparations on formation of gluten network during model dough mixing—A study with application of FT-IR and FT-Raman spectroscopy. LWT Food Sci. Technol. 2020, 121, 108959. [Google Scholar] [CrossRef]
- Sobota, A.; Rzedzicki, Z.; Zarzycki, P.; Wirkijowska, A.; Sykut-Domańska, E. Zmiany zawartości tłuszczu wolnego w czasie procesu produkcji makaronu jajecznego. Zywn. Nauk. Technol. Jakosc/Food. Sci. Technol. Qual. 2015, 22, 152–164. [Google Scholar]
- Gutiérrez, T.J.; Tovar, J. Update of the concept of type 5 resistant starch (RS5): Self-assembled starch V-type complexes. Trends Food Sci. Technol. 2021, 109, 711–724. [Google Scholar] [CrossRef]
- Rutto, L.K.; Xu, Y.; Ramirez, E.; Brandt, M. Mineral properties and dietary value of raw and processed stinging nettle (Urtica dioica L.). Int. J. Food Sci. 2013, 2013, 857120. [Google Scholar] [CrossRef] [Green Version]
- Rafajlovska, V.; Kavrakovski, Z.; Simonovska, J.; Srbinoska, M. Determination of protein and mineral contents in stinging nettle. Qual. Life (Banja Luka) APEIRON 2013, 7, 1664. [Google Scholar] [CrossRef] [Green Version]
- Paulauskienė, A.; Tarasevičienė, Ž.; Laukagalis, V. Influence of harvesting time on the chemical composition of wild stinging nettle (Urtica dioica L.). Plants 2021, 10, 686. [Google Scholar] [CrossRef]
- Ait, A.; Said, H.; Benmoussa, A.; Sbai, I.; Otmani, E.L.; Derfoufi, S. Highlights on nutritional and therapeutic value of stinging nettle (Urtica Dioica). Nutrition View project Quality management in hospitals. Int. J. Pharm. Pharm. Sci. 2015, 7, 8–14. [Google Scholar]
- Fradinho, P.; Niccolai, A.; Soares, R.; Rodolfi, L.; Biondi, N.; Tredici, M.R.; Sousa, I.; Raymundo, A. Effect of Arthrospira platensis (spirulina) incorporation on the rheological and bioactive properties of gluten-free fresh pasta. Algal Res. 2020, 45, 101743. [Google Scholar] [CrossRef]
- Krawęcka, A.; Sobota, A.; Sykut-Domańska, E. Physicochemical, Sensory, and Cooking Qualities of Pasta Enriched with Oat β-Glucans, Xanthan Gum, and Vital Gluten. Foods 2020, 9, 1412. [Google Scholar] [CrossRef]
- Zarzycki, P.; Sykut-Domańska, E.; Sobota, A.; Teterycz, D.; Krawęcka, A.; Blicharz-Kania, A.; Andrejko, D.; Zdybel, B. Flaxseed Enriched Pasta—Chemical Composition and Cooking Quality. Foods 2020, 9, 404. [Google Scholar] [CrossRef] [Green Version]
- Yu, K.; Zhou, H.-M.; Zhu, K.-X.; Guo, X.-N.; Peng, W. Water Cooking Stability of Dried Noodles Enriched with Different Particle Size and Concentration Green Tea Powders. Foods 2020, 9, 298. [Google Scholar] [CrossRef] [Green Version]
- Teterycz, D.; Sobota, A.; Przygodzka, D.; Lysakowska, P. Hemp seed (Cannabis sativa L.) enriched pasta: Physicochemical properties and quality evaluation. PLoS ONE 2021, 16, e0248790. [Google Scholar] [CrossRef]
- Lange, E.; Myszkowska-Ryciak, J.; Gajewska, D.; Kęszycka, P. Ocena glikemii poposiłkowej i indeksu glikemicznego innowacyjnych pełnoziarnistych produktów zbożowych u zdrowych dorosłych osób. Handel Wewnętrzny 2018, 3, 277–289. [Google Scholar]
- Huang, M.; Li, J.; Ha, M.-A.; Riccardi, G.; Liu, S. A systematic review on the relations between pasta consumption and cardio-metabolic risk factors. Nutr. Metab. Cardiovasc. Dis. 2017, 27, 939–948. [Google Scholar] [CrossRef] [Green Version]
- Zaharudin, N.; Salmeán, A.A.; Dragsted, L.O. Inhibitory effects of edible seaweeds, polyphenolics and alginates on the activities of porcine pancreatic α-amylase. Food Chem. 2018, 245, 1196–1203. [Google Scholar] [CrossRef]
- Barrett, A.H.; Farhadi, N.F.; Smith, T.J. Slowing starch digestion and inhibiting digestive enzyme activity using plant flavanols/tannins—A review of efficacy and mechanisms. LWT Food Sci. Technol. 2018, 87, 394–399. [Google Scholar] [CrossRef]
- Yazdankhah, S.; Hojjati, M.; Azizi, M.H. The Antidiabetic Potential of Black Mulberry Extract-Enriched Pasta through Inhibition of Enzymes and Glycemic Index. Plant Foods Hum. Nutr. 2019, 74, 149–155. [Google Scholar] [CrossRef]
- Lalegani, S.; Gavlighi, H.A.; Azizi, M.H.; Amini Sarteshnizi, R. Inhibitory activity of phenolic-rich pistachio green hull extract-enriched pasta on key type 2 diabetes relevant enzymes and glycemic index. Food Res. Int. 2018, 105, 94–101. [Google Scholar] [CrossRef] [PubMed]
- AACC. American Association of Cereal Chemistry Approved Methods. 10th ed. St.Paul. Available online: http://methods.aaccnet.org/toc.aspx (accessed on 29 July 2020).
- AOAC. Association of Official Analytical Chemists International. Official Methods (20th ed.). Rockville. Available online: https://www.aoac.org/official-methods-of-analysis-21st-edition-2019/ (accessed on 29 July 2020).
- International Organization for Standardization ISO 6491:1998. Determination of phosphorus content. Spectrophotometric method. Available online: https://www.iso.org/standard/12864.html (accessed on 29 July 2020).
- Złotek, U.; Świeca, M.; Jakubczyk, A. Effect of abiotic elicitation on main health-promoting compounds, antioxidant activity and commercial quality of butter lettuce (Lactuca sativa L.). Food Chem. 2014, 148, 253–260. [Google Scholar] [CrossRef]
- Monro, J.A.; Wallace, A.; Mishra, S.; Eady, S.; Willis, J.A.; Scott, R.S.; Hedderley, D. Relative glycaemic impact of customarily consumed portions of eighty-three foods measured by digesting in vitro and adjusting for food mass and apparent glucose disposal. Br. J. Nutr. 2010, 104, 407–417. [Google Scholar] [CrossRef] [Green Version]
- Reis, S.F.; Abu-Ghannam, N. Antioxidant capacity, arabinoxylans content and invitro glycaemic index of cereal-based snacks incorporated with brewer’s spent grain. LWT Food Sci. Technol. 2014, 55, 269–277. [Google Scholar] [CrossRef] [Green Version]
- Goñi, I.; Garcia-Alonso, A.; Saura-Calixto, F. A starch hydrolysis procedure to estimate glycemic index. Nutr. Res. 1997, 17, 427–437. [Google Scholar] [CrossRef]
Samples | Raw Materials (%) | Process Parameters | |||
---|---|---|---|---|---|
Semolina Durum | Stinging Nettle | Pressure(MPa) | Barrel Temperature (°C) | Extruder Output (kg h−1) | |
CON | 100 | - | 12 | 27.9 | 28.26 |
N1 | 99 | 1 | 12.1 | 28.6 | 30.96 |
N2 | 98 | 2 | 12.5 | 28.3 | 30.48 |
N3 | 97 | 3 | 12.4 | 28.9 | 31.72 |
N4 | 96 | 4 | 12.5 | 28.5 | 30.84 |
N5 | 95 | 5 | 12.1 | 29.2 | 30.55 |
Samples | Moisture | Protein | Fat | Ash | TDF | IDF | SDF | Digestible Carbohydrate |
---|---|---|---|---|---|---|---|---|
g 100 g−1 w.m. | g 100 g−1 d.m. | |||||||
Raw materials | ||||||||
Semolina durum | 9.38 B ± 0.07 | 15.90 A ± 1.02 | 1.02 A ± 0.05 | 0.94 A ± 0.01 | 4.25 A ± 0.35 | 2.22 A ± 0.3 | 2.03 A ± 0.05 | 81.01 |
Stinging nettle | 6.13 A ± 0.26 | 24.64 B ± 2.03 | 1.48 B ± 0.10 | 24.58 B ± 0.11 | 43.22 B ± 6.16 | 38.05 B ± 3.07 | 5.17 B ± 3.09 | 6.08 |
Pasta samples | ||||||||
CON | 10.11 c ± 0.2 | 16.21 a ± 0.19 | 0.19 a ± 0.01 | 1.00 a ± 0.02 | 5.10 a ± 0.77 | 2.29 a ± 1.02 | 2.81 a ± 0.26 | 78.40 |
N1 | 9.6 ab ± 0.03 | 16.12 a ± 0.17 | 0.17 a ± 0.01 | 1.25 b ± 0.02 | 5.46 a ± 0.01 | 2.26 a ± 0.12 | 3.20 a ± 0.10 | 77.00 |
N2 | 10.15 c ± 0.04 | 16.34 a ± 0.16 | 0.16 a ± 0.01 | 1.36 c ± 0.00 | 5.73 a ± 0.48 | 3.27 ab ± 0.02 | 2.45 a ± 0.46 | 76.41 |
N3 | 9.74 b ± 0.05 | 16.26 a ± 0.20 | 0.20 a ± 0.01 | 1.53 d ± 0.01 | 7.60 b ± 0.55 | 4.27 bc ± 0.36 | 3.33 a ± 0.19 | 74.41 |
N4 | 9.49 a ± 0.06 | 16.44 a ± 0.18 | 0.18 a ± 0.01 | 1.62 e ± 0.02 | 7.69 b ± 0.26 | 4.46 bc ± 0.18 | 3.23 a ± 0.43 | 74.07 |
N5 | 9.59 ab ± 0.26 | 16.66 a ± 0.14 | 0.14 a ± 0.01 | 2.04 f ± 0.00 | 8.82 c ± 0.10 | 5.63 c ± 0.36 | 3.19 a ± 0.47 | 72.34 |
Concentration of the Ions | ||||||
---|---|---|---|---|---|---|
Ca | Fe | K | Mg | Si | P | |
mg·100 g−1 d.m. | g·kg−1 d.m. | |||||
Raw materials | ||||||
Semolina durum | 33.33 A ± 2.36 | 3.99 A ± 0.28 | 26.04 A ± 1.84 | 46.35 A ± 3.28 | 16.00 A ± 1.13 | 2.32 A ± 0.16 |
Stinging nettle | 7824.69 B ± 553.29 | 15.39 B ± 1.09 | 277.93 B ± 19.65 | 600.75 B ± 42.48 | 22.23 B ± 1.57 | 4.17 B ± 0.29 |
Pasta samples | ||||||
CON | 30.50 a ± 0.30 | 2.38 a ± 0.10 | 270.50 a ± 1.92 | 51.54 a ± 0.16 | 2.30 a ± 0.24 | 2.39 a ± 0.08 |
N1 | 73.77 b ± 1.48 | 2.83 ab ± 0.04 | 292.36 ab ± 0.68 | 53.64 a ± 0.50 | 2.79 a ± 0.12 | 2.43 a ± 0.00 |
N2 | 88.47 c ± 4.97 | 2.89 ab ± 0.65 | 299.63 b ± 19.14 | 56.37 a ± 4.43 | 2.84 a ± 0.60 | 2.38 a ± 0.08 |
N3 | 131.99 d ± 7.49 | 2.98 ab ± 0.12 | 331.74 c ± 2.10 | 64.76 b ± 0.99 | 2.90 a ± 0.18 | 2.45 a ± 0.00 |
N4 | 120.31 d ± 3.98 | 2.99 ab ± 0.16 | 356.81 d ± 0.64 | 64.25 b ± 1.54 | 2.88 a ± 0.83 | 2.49 a ± 0.08 |
N5 | 175.89 e ± 6.85 | 3.23 b ± 0.25 | 372.91 d ± 2.82 | 72.80 c ± 1.20 | 2.98 a ± 0.09 | 2.49 a ± 0.08 |
Samples | Pigment Content | ||
---|---|---|---|
Chlorophyll a | Chlorophyll b | Carotenoids | |
μg·g−1 d.m. | |||
Raw materials | |||
Semolina durum | 22.42 b ± 0.28 | 3.42 a ± 0.79 | 1.99 a ± 1.01 |
Stinging nettle | 2792.57 g ± 3.70 | 1997.67 f ± 7.46 | 146.24 g ± 2.60 |
Pasta samples | |||
CON | 9.82 a ± 2.00 | n.d. | 1.05 a ± 0.01 |
N1 | 23.47 b ± 0.81 | 12.02 ab ± 0.09 | 2.52 ab ± 0.04 |
N2 | 48.26 c ± 0.51 | 22.58 bc ± 0.43 | 4.81 bc ± 0.37 |
N3 | 71.85 d ± 1.26 | 33.20 c ± 0.51 | 6.07 cd ± 0.27 |
N4 | 119.58 e ± 6.02 | 53.54 d ± 2.55 | 10.95 de ± 1.07 |
N5 | 160.74 f ± 0.51 | 76.84 e ± 2.82 | 13.35 f ± 1.39 |
Pasta Samples | Cooking Time (min) | Cooking Loss (% d.m.) | Cooking Weight Increase |
---|---|---|---|
CON | 4.5 a ± 0.0 | 3.74 a ± 0.26 | 2.21 a ± 0.13 |
N1 | 5.0 ab ± 0.0 | 4.40 ab ± 0.35 | 2.32 a ± 0.01 |
N2 | 5.0 ab ± 0.5 | 4.33 ab ± 0.32 | 2.27 a ± 0.03 |
N3 | 5.5 bc ± 0.5 | 5.03 bc ± 0.49 | 2.45 a ± 0.30 |
N4 | 5.5 bc ± 0.0 | 5.83 bc ± 0.41 | 2.49 a ± 0.00 |
N5 | 6 c ± 0.0 | 6.19 c ± 0.08 | 2.45 a ± 0.05 |
Pasta Samples | Uncooked | Cooked | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Appearance | Color | Odor | Appearance | Color | Taste | Odor | Hardness | Adhesiveness | Springiness | |
CON | 4.93 b ± 0.26 | 4.93 c ± 0.26 | 5 b ± 0.00 | 4.93 a ± 0.26 | 4.53 ab ± 0.52 | 4.9 b ± 0.41 | 5 c ± 0.00 | 4.87 a ± 0.35 | 4.6 ab ± 0.63 | 4.73 ab ± 0.46 |
N1 | 4.33 a ± 0.62 | 4.2 a ± 0.41 | 4.73 b ± 0.46 | 4.86 a ± 0.52 | 4.27 a ± 0.59 | 4.07 a ± 0.96 | 4.2 ab ± 0.56 | 4.47 a ± 1.06 | 4.53 ab ± 0.64 | 4.47 a ± 0.52 |
N2 | 4.73 ab ± 0.46 | 4.4 ab ± 0.51 | 3.93 a ± 1.16 | 5.0 a ± 0.00 | 4.33 a ± 0.49 | 4.8 b ± 0.41 | 4.07 a ± 0.88 | 4.67 a ± 0.49 | 4.47 a ± 0.64 | 4.53 ab ± 0.52 |
N3 | 4.87 b ± 0.35 | 4.73 bc ± 0.46 | 4.4 ab ± 0.63 | 4.87 a ± 0.35 | 4.2 a ± 0.56 | 3.6 a ± 0.74 | 4.13 a ± 0.35 | 4.87 a ± 0.35 | 4.87 ab ± 0.35 | 4.93 b ± 0.26 |
N4 | 4.73 ab ± 0.46 | 4.53 abc ± 0.52 | 4.6 ab ± 0.51 | 4.87 a ± 0.35 | 4.6 ab ± 0.63 | 4.07 a ± 0.59 | 4.53 abc ± 0.52 | 4.87 a ± 0.35 | 4.87 ab ± 0.35 | 4.93 b ± 0.26 |
N5 | 4.8 ab ± 0.41 | 4.33 ab ± 0.49 | 4.73 b ± 0.59 | 4.8 a ± 0.41 | 4.93 b ± 0.26 | 3.87 a ± 0.52 | 4.73 bc ± 0.46 | 4.67 a ± 1.05 | 5 b ± 0.00 | 4.93 b ± 0.26 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krawęcka, A.; Sobota, A.; Pankiewicz, U.; Zielińska, E.; Zarzycki, P. Stinging Nettle (Urtica dioica L.) as a Functional Component in Durum Wheat Pasta Production: Impact on Chemical Composition, In Vitro Glycemic Index, and Quality Properties. Molecules 2021, 26, 6909. https://doi.org/10.3390/molecules26226909
Krawęcka A, Sobota A, Pankiewicz U, Zielińska E, Zarzycki P. Stinging Nettle (Urtica dioica L.) as a Functional Component in Durum Wheat Pasta Production: Impact on Chemical Composition, In Vitro Glycemic Index, and Quality Properties. Molecules. 2021; 26(22):6909. https://doi.org/10.3390/molecules26226909
Chicago/Turabian StyleKrawęcka, Ada, Aldona Sobota, Urszula Pankiewicz, Ewelina Zielińska, and Piotr Zarzycki. 2021. "Stinging Nettle (Urtica dioica L.) as a Functional Component in Durum Wheat Pasta Production: Impact on Chemical Composition, In Vitro Glycemic Index, and Quality Properties" Molecules 26, no. 22: 6909. https://doi.org/10.3390/molecules26226909
APA StyleKrawęcka, A., Sobota, A., Pankiewicz, U., Zielińska, E., & Zarzycki, P. (2021). Stinging Nettle (Urtica dioica L.) as a Functional Component in Durum Wheat Pasta Production: Impact on Chemical Composition, In Vitro Glycemic Index, and Quality Properties. Molecules, 26(22), 6909. https://doi.org/10.3390/molecules26226909