Genetic Polymorphisms Affecting Ranibizumab Response in High Myopia Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Inclusion/Exclusion Criteria
2.2. Patients Management
2.3. Data Management
2.4. Procedures for the Inclusion of Genetic Variants in the Study
2.5. DNA Extraction and Genotyping
2.6. Statistical Analysis
3. Results
3.1. Genotypic Distribution, H-W Equilibrium, and Association of Genetic Variants with CNV
3.2. Association of Genetic Polymorphisms with Response
3.2.1. Allele Association Study with Response
3.2.2. Genotype Association Study with Response
4. Discussion
4.1. ARMS2 (rs10490924) and CFH (rs1061170)
4.2. VEGFA Genetic Polymorphisms
4.3. Other Genetic Polymorphisms Included in This Study
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fredrick, D.R. Myopia. BMJ 2002, 324, 1195–1199. [Google Scholar] [CrossRef] [PubMed]
- Dolgin, E. The myopia boom. Nature 2015, 519, 276–278. [Google Scholar] [CrossRef] [Green Version]
- Miller, D.G.; Singerman, L.J. Natural history of choroidal neovascularization in high myopia. Curr. Opin. Ophthalmol. 2001, 12, 222–224. [Google Scholar] [CrossRef] [PubMed]
- Chung, Y.W.; Choi, M.Y.; Kim, J.S.; Kwon, J.W. The Association between Macular Thickness and Axial Length in Myopic Eyes. BioMed Res. Int. 2019, 2019, 8913582. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saw, S.M.; Gazzard, G.; Shih-Yen, E.C.; Chua, W.H. Myopia and associated pathological complications. Ophthalmic & physiological optics. J. Br. Coll. Ophthalmic Opt. 2005, 25, 381–391. [Google Scholar]
- Chuck, R.S.; Jacobs, D.S.; Lee, J.K.; Afshari, N.A.; Vitale, S.; Shen, T.T.; Keenan, J.D. Refractive Errors & Refractive Surgery Preferred Practice Pattern®. Ophthalmology 2018, 125, P1–P104. [Google Scholar] [PubMed] [Green Version]
- Hayashi, K.; Ohno-Matsui, K.; Shimada, N.; Moriyama, M.; Kojima, A.; Hayashi, W.; Yasuzumi, K.; Nagaoka, N.; Saka, N.; Yoshida, T.; et al. Long-term pattern of progression of myopic maculopathy: A natural history study. Ophthalmology 2010, 117, 1595–1611.e1-4. [Google Scholar] [CrossRef]
- Ng, D.S.C.; Fung, N.S.K.; Yip, F.L.T.; Lai, T.Y.Y. Ranibizumab for myopic choroidal neovascularization. Expert Opin. Biol. Ther. 2020, 20, 1385–1393. [Google Scholar] [CrossRef] [PubMed]
- Wong, T.Y.; Ferreira, A.; Hughes, R.; Carter, G.; Mitchell, P. Epidemiology and disease burden of pathologic myopia and myopic choroidal neovascularization: An evidence-based systematic review. Am. J. Ophthalmol. 2014, 157, 9–25.e12. [Google Scholar] [CrossRef]
- Miyake, M.; Yamashiro, K.; Akagi-Kurashige, Y.; Kumagai, K.; Nakata, I.; Nakanishi, H.; Oishi, A.; Tsujikawa, A.; Yamada, R.; Matsuda, F.; et al. Vascular endothelial growth factor gene and the response to anti-vascular endothelial growth factor treatment for choroidal neovascularization in high myopia. Ophthalmology 2014, 121, 225–233. [Google Scholar] [CrossRef]
- Velazquez-Villoria, A.; Recalde, S.; Anter, J.; Bezunartea, J.; Hernandez-Sanchez, M.; García-García, L.; Alonso, E.; Ruiz-Moreno, J.M.; Araiz-Iribarren, J.; Fernández-Robredo, P.; et al. Evaluation of 10 AMD Associated Polymorphisms as a Cause of Choroidal Neovascularization in Highly Myopic Eyes. PLoS ONE 2016, 11, e0162296. [Google Scholar]
- Hampton, G.R.; Kohen, D.; Bird, A.C. Visual prognosis of disciform degeneration in myopia. Ophthalmology 1983, 90, 923–926. [Google Scholar] [CrossRef]
- Secrétan, M.; Kuhn, D.; Soubrane, G.; Coscas, G. Long-term visual outcome of choroidal neovascularization in pathologic myopia: Natural history and laser treatment. Eur. J. Ophthalmol. 1997, 7, 307–316. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, T.; Ohno-Matsui, K.; Ohtake, Y.; Takashima, T.; Futagami, S.; Baba, T.; Yasuzumi, K.; Tokoro, T.; Mochizuki, M. Long-term visual prognosis of choroidal neovascularization in high myopia: A comparison between age groups. Ophthalmology 2002, 109, 712–719. [Google Scholar] [CrossRef]
- Wong, T.Y.; Ohno-Matsui, K.; Leveziel, N.; Holz, F.G.; Lai, T.Y.; Yu, H.G.; Lanzetta, P.; Chen, Y.; Tufail, A. Myopic choroidal neovascularisation: Current concepts and update on clinical management. Br. J. Ophthalmol. 2015, 99, 289–296. [Google Scholar] [CrossRef]
- Kojima, A.; Ohno-Matsui, K.; Teramukai, S.; Ishihara, Y.; Shimada, N.; Yoshida, T.; Sugamoto, Y.; Tokoro, T.; Mochizuki, M.; Kojima, A.; et al. Estimation of visual outcome without treatment in patients with subfoveal choroidal neovascularization in pathologic myopia. Graefe’s Arch. Clin. Exp. Ophthalmol. 2006, 244, 1474–1479. [Google Scholar] [CrossRef]
- Ruiz-Moreno, J.M.; Montero, J.A. Long-term visual acuity after argon green laser photocoagulation of juxtafoveal choroidal neovascularization in highly myopic eyes. Eur. J. Ophthalmol. 2002, 12, 117–122. [Google Scholar] [CrossRef]
- Uemura, A.; Thomas, M.A. Subretinal surgery for choroidal neovascularization in patients with high myopia. Arch. Ophthalmol. 2000, 118, 344–350. [Google Scholar] [CrossRef] [Green Version]
- Arnold, J.; Kilmartin, D.; Olson, J.; Neville, S.; Robinson, K.; Laird, A.; Richmond, C.; Farrow, A.; McKay, S.; Saperstein, D.A.; et al. Photodynamic therapy of subfoveal choroidal neovascularization in pathologic myopia with verteporfin. 1-year results of a randomized clinical trial--VIP report no. 1. Ophthalmology 2001, 108, 841–852. [Google Scholar]
- Blinder, K.J.; Blumenkranz, M.S.; Bressler, N.M.; Bressler, S.B.; Donato, G.; Lewis, H.; Lim, J.I.; Menchini, U.; Miller, J.W.; Mones, J.M.; et al. Verteporfin therapy of subfoveal choroidal neovascularization in pathologic myopia: 2-year results of a randomized clinical trial--VIP report no. 3. Ophthalmology 2003, 110, 667–673. [Google Scholar] [PubMed]
- Giansanti, F.; Virgili, G.; Donati, M.C.; Giuntoli, M.; Pieretti, G.; Abbruzzese, G.; Menchini, U.; Giansanti, F. Long-term results of photodynamic therapy for subfoveal choroidal neovascularization with pathologic myopia. Retina 2012, 32, 1547–1552. [Google Scholar] [CrossRef]
- Wolf, S.; Balciuniene, V.J.; Laganovska, G.; Menchini, U.; Ohno-Matsui, K.; Sharma, T.; Wong, T.Y.; Silva, R.; Pilz, S.; Gekkieva, M.; et al. Radiance: A randomized controlled study of ranibizumab in patients with choroidal neovascularization secondary to pathologic myopia. Ophthalmology 2014, 121, 682–692.e2. [Google Scholar]
- Chen, Y.; Sharma, T.; Li, X.; Song, Y.; Chang, Q.; Lin, R.; Egger, A.; Foo, A.; Gekkieva, M.; Lai, T.Y.Y. Ranibizumab versus verteporfin photodynamic therapy in asian patients with myopic choroidal neovascularization: Brilliance, a 12-Month, Randomized, Double-Masked Study. Retina 2019, 39, 1985–1994. [Google Scholar] [CrossRef] [PubMed]
- Hamilton, R.D.; Clemens, A.; Minnella, A.M.; Lai, T.Y.Y.; Dai, H.; Sakamoto, T.; Cheung, C.M.G.; Ngah, M.F.; Dunger-Baldauf, C.; Holz, F.G.; et al. Real-world effectiveness and safety of ranibizumab for the treatment of myopic choroidal neovascularization: Results from the LUMINOUS study. PLoS ONE 2020, 15, e0227557. [Google Scholar]
- Holz, F.G.; Tufail, A.; Leveziel, N.; Lai, T.Y.; Lanzetta, P.; Wong, T.Y.; Yu, H.G.; Chen, Y.X.; Heinrichs, N.; Pilz, S.; et al. Ranibizumab in Myopic Choroidal Neovascularization: A Subgroup Analysis by Ethnicity, Age, and Ocular Characteristics in radiance. Ophthalmologica 2016, 236, 19–28. [Google Scholar] [CrossRef]
- Hautamäki, A.; Kivioja, J.; Seitsonen, S.; Savolainen, E.R.; Liinamaa, M.J.; Luoma, A.; Järvelä, I.; Immonen, I.; Hautamäki, A. The IL-8, VEGF, and CFH Polymorphisms and Bevacizumab in Age-related Macular Degeneration. Ophthalmology 2014, 121, 973. [Google Scholar] [CrossRef] [PubMed]
- Smailhodzic, D.; Muether, P.S.; Chen, J.; Kwestro, A.; Zhang, A.Y.; Omar, A.; Van de Ven, J.P.; Keunen, J.E.; Kirchhof, B.; Hoyng, C.B.; et al. Cumulative effect of risk alleles in CFH, ARMS2, and VEGFA on the response to ranibizumab treatment in age-related macular degeneration. Ophthalmology 2012, 119, 2304–2311. [Google Scholar] [CrossRef]
- Medina, F.M.; Alves Lopes da Motta, A.; Takahashi, W.Y.; Carricondo, P.C.; Dos Santos Motta, M.M.; Melo, M.B.; Vasconcellos, J.P.C. Pharmacogenetic Effect of Complement Factor H Gene Polymorphism in Response to the Initial Intravitreal Injection of Bevacizumab for Wet Age-Related Macular Degeneration. Ophthalmic Res. 2015, 54, 169–174. [Google Scholar] [CrossRef]
- Abedi, F.; Wickremasinghe, S.; Richardson, A.J.; Makalic, E.; Schmidt, D.F.; Sandhu, S.S.; Baird, P.N.; Guymer, R.H. Variants in the VEGFA gene and treatment outcome after anti-VEGF treatment for neovascular age-related macular degeneration. Ophthalmology 2013, 120, 115–121. [Google Scholar]
- Brantley, M.A.; Jr Edelstein, S.L.; King, J.M.; Plotzke, M.R.; Apte, R.S.; Kymes, S.M.; Shiels, A. Association of complement factor H and LOC387715 genotypes with response of exudative age-related macular degeneration to photodynamic therapy. Eye 2009, 23, 626–631. [Google Scholar] [CrossRef] [Green Version]
- Tian, J.; Qin, X.; Fang, K.; Chen, Q.; Hou, J.; Li, J.; Yu, W.; Chen, D.; Hu, Y.; Li, X. Association of genetic polymorphisms with response to bevacizumab for neovascular age-related macular degeneration in the Chinese population. Pharmacogenomics 2012, 13, 779–787. [Google Scholar] [CrossRef] [PubMed]
- Lazzeri, S.; Figus, M.; Orlandi, P.; Fioravanti, A.; Di Desidero, T.; Agosta, E.; Sartini, M.S.; Posarelli, C.; Nardi, M.; Danesi, R.; et al. VEGF-A polymorphisms predict short-term functional response to intravitreal ranibizumab in exudative age-related macular degeneration. Pharmacogenomics 2013, 14, 623–630. [Google Scholar] [CrossRef] [PubMed]
- Díaz-Villamarín, X.; Blánquez-Martínez, D.; Pozo-Agundo, A.; Pérez-Gutiérrez, A.M.; Muñoz-Ávila, J.I.; Antúnez-Rodríguez, A.; Fernández-Gómez, A.E.; García-Navas, P.; Martínez-González, L.J.; Dávila-Fajardo, C.L.; et al. Genetic Variants Affecting Anti-VEGF Drug Response in Polypoidal Choroidal Vasculopathy Patients: A Systematic Review and Meta-Analysis. Genes 2020, 11, 1335. [Google Scholar] [CrossRef]
- Freeman, B.; Smith, N.; Curtis, C.; Huckett, L.; Mill, J.; Craig, I. DNA from buccal swabs recruited by mail: Evaluation of storage effects on long-term stability and suitability for multiplex polymerase chain reaction genotyping. Behav. Genet. 2003, 33, 67–72. [Google Scholar] [CrossRef]
- Gómez-Martín, A.; Hernández, A.F.; Martínez-González, L.J.; González-Alzaga, B.; Rodríguez-Barranco, M.; López-Flores, I.; Aguilar-Garduno, C.; Lacasana, M. Polymorphisms of pesticide-metabolizing genes in children living in intensive farming communities. Chemosphere 2015, 139, 534–540. [Google Scholar] [CrossRef]
- Solé, X.; Guinó, E.; Valls, J.; Iniesta, R.; Moreno, V. SNPStats: A web tool for the analysis of association studies. Bioinformatics 2006, 22, 1928–1929. [Google Scholar] [CrossRef] [Green Version]
- Rinaldi, C.; Bramanti, P.; Scimone, C.; Donato, L.; Alafaci, C.; D´angelo, R.; Sidoti, A. Relevance of CCM gene polymorphisms for clinical management of sporadic cerebral cavernous malformations. J. Neurol. Sci. 2017, 380, 31–37. [Google Scholar] [CrossRef]
- Scimone, C.; Donato, L.; Katsarou, Z.; Bostantjopoulou, S.; D´angelo, R.; Sidoti, A. Two Novel KRIT1 and CCM2 Mutations in Patients Affected by Cerebral Cavernous Malformations: New Information on CCM2 Penetrance. Front. Neurol. 2018, 9, 953. [Google Scholar] [CrossRef]
- Scimone, C.; Bramanti, P.; Ruggeri, A.; Donato, L.; Alafaci, C.; Crisafulli, C.; Mucciardi, M.; Rinaldi, C.; Sidoti, A.; D´Angelo, R. CCM3/SERPINI1 bidirectional promoter variants in patients with cerebral cavernous malformations: A molecular and functional study. BMC Med. Genet. 2016, 17, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Scimone, C.; Bramanti, P.; Ruggeri, A.; Katsarou, Z.; Donato, L.; Sidoti, A.; D´Angelo, R. Detection of Novel Mutation in Ccm3 Causes Familial Cerebral Cavernous Malformations. J. Mol. Neurosci. MN 2015, 57, 400–403. [Google Scholar] [CrossRef]
- Wang, Z.; Zou, M.; Chen, A.; Liu, Z.; Young, C.A.; Wang, S.B.; Zheng, D.; Jin, G. Genetic associations of anti-vascular endothelial growth factor therapy response in age-related macular degeneration: A systematic review and meta-analysis. Acta Ophthalmol. 2021. Published online ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Hong, N.; Shen, Y.; Yu, C.Y.; Wang, S.Q.; Tong, J.P. Association of the polymorphism Y402H in the CFH gene with response to anti-VEGF treatment in age-related macular degeneration: A systematic review and meta-analysis. Acta Ophthalmol. 2016, 94, 334–345. [Google Scholar] [CrossRef] [Green Version]
- Diekstra, M.H.; Liu, X.; Swen, J.J.; Boven, E.; Castellano, D.; Gelderblom, H.; Mathijssen, R.H.; Rodríguez-Antona, C.; García-Donas, J.; Rini, B.I.; et al. Association of single nucleotide polymorphisms in IL8 and IL13 with sunitinib-induced toxicity in patients with metastatic renal cell carcinoma. Eur. J. Clin. Pharmacol. 2015, 71, 1477–1484. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lambert, N.G.; ElShelmani, H.; Singh, M.K.; Mansergh, F.C.; Wride, M.A.; Padilla, M.; Keegan, D.; Hogg, R.E.; Ambati, B.K. Risk factors and biomarkers of age-related macular degeneration. Prog. Retin. Eye Res. 2016, 54, 64–102. [Google Scholar] [CrossRef] [Green Version]
- Micklisch, S.; Lin, Y.; Jacob, S.; Karlstetter, M.; Dannhausen, K.; Dasari, P.; Von der Heide, M.; Dahse, H.M.; Schmölz, M.; Grassmann, F.; et al. Age-related macular degeneration associated polymorphism rs10490924 in ARMS2 results in deficiency of a complement activator. J. Neuroinflammation 2017, 14, 4. [Google Scholar] [CrossRef] [Green Version]
- Valverde-Megías, A.; Veganzones-de-Castro, S.; Donate-López, J.; Maestro-de-Las-Casas, M.L.; Megías-Fresno, A.; García-Feijoo, J. ARMS2 A69S polymorphism is associated with the number of ranibizumab injections needed for exudative age-related macular degeneration in a pro re nata regimen during 4 years of follow-up. Graefe’s Arch. Clin. Exp. Ophthalmol. 2017, 255, 2091–2098. [Google Scholar] [CrossRef]
- Kang, H.K.; Yoon, M.H.; Lee, D.H.; Chin, H.S. Pharmacogenetic influence of LOC387715/HTRA1 on the efficacy of bevacizumab treatment for age-related macular degeneration in a Korean population. Korean J. Ophthalmol. KJO 2012, 26, 414–422. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Consortium, G.P. An integrated map of genetic variation from 1092 human genomes. Nature 2012, 491, 56–65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karczewski, K.J.; Francioli, L.C.; Tiao, G.; Cummings, B.B.; Alföldi, J.; Wang, Q.; Collins, R.L.; Laricchia, K.M.; Ganna, A.; Birnbaum, D.P.; et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature 2020, 581, 434–443. [Google Scholar] [CrossRef]
- Lotery, A.J.; Gibson, J.; Cree, A.J.; Downes, S.M.; Harding, S.P.; Rogers, C.A.; Reeves, B.C.; Ennis, S.; Chakravarthy, U. Pharmacogenetic associations with vascular endothelial growth factor inhibition in participants with neovascular age-related macular degeneration in the IVAN Study. Ophthalmology 2013, 120, 2637–2643. [Google Scholar] [CrossRef] [PubMed]
- Chang, W.; Noh, D.H.; Sagong, M.; Kim, I.T. Pharmacogenetic association with early response to intravitreal ranibizumab for age-related macular degeneration in a Korean population. Mol. Vis. 2013, 19, 702–709. [Google Scholar] [PubMed]
- Johnson, L.V.; Leitner, W.P.; Staples, M.K.; Anderson, D.H. Complement activation and inflammatory processes in Drusen formation and age related macular degeneration. Exp. Eye Res. 2001, 73, 887–896. [Google Scholar] [CrossRef] [PubMed]
- Despriet, D.D.; Klaver, C.C.; Witteman, J.C.; Bergen, A.A.; Kardys, I.; de Maat, M.P.; Boekhoorn, S.S.; Vingerling, J.R.; Hofman, A.; Oostra, B.A.; et al. Complement factor H polymorphism, complement activators, and risk of age-related macular degeneration. J. Am. Med. Assoc. 2006, 296, 301–309. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, G.; Tzekov, R.; Li, W.; Jiang, F.; Mao, S.; Tong, Y. Pharmacogenetics of Complement Factor H Y402H Polymorphism and Treatment of Neovascular AMD with Anti-VEGF Agents: A Meta-Analysis. Sci. Rep. 2015, 5, 14517. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Gene | Major Nucleotide Variation | Rs | MAF | Response-Related Drug | Exclusion Criteria | Included |
---|---|---|---|---|---|---|
CXCL8 | A > T | rs4073 | 42/58 | Bevacizumab | - | Yes |
NRP1 | C > T | rs2070296 | 84/16 | Ranibizumab | - | Yes |
ARMS2 | G > T | rs10490924 | 81/19 | Bevacizumab | - | Yes |
CFH | C > T | rs1061170 | 36/64 | Bevacizumab/ Ranibizumab/PT | - | Yes |
HTRA1 | G > A | rs11200638 | 81/19 | Bevacizumab/ Ranibizumab | Linked: rs10490924 (ARMS2) | No |
F13A1 | C > A | rs5985 | 76/24 | PT | - | Yes |
VEGFA | A > G | rs13207351 | 50/50 | Other | Linked: rs699947 | No |
VEGFA | * (INDEL) | rs144854329 | (INDEL) 50/50 | Other | Linked: rs699947 | No |
VEGFA | A > G | rs1570360 | 32/68 | Other | - | Yes |
VEGFA | C > G | rs2010963 | 31/69 | Bevacizumab/ Ranibizumab | - | Yes |
VEGFA | C > T | rs25648 | 83/17 | Other | - | Yes |
VEGFA | C > T | rs3025000 | 71/29 | Bevacizumab/ Ranibizumab | - | Yes |
VEGFA | C > T | rs3025039 | 88/12 | Other | Linked: rs3025040 | No |
VEGFA | C > T | rs3025040 | 88/12 | Other | - | Yes |
VEGFA | G (INDEL) | rs35864111 | (INDEL) 50/50 | Other | Linked: rs699947 | No |
VEGFA | C > T | rs6900017 | 91/9 | Other | MAF: 91/9 | No |
VEGFA | A > C | rs699947 | 50/50 | Ranibizumab | - | Yes |
VEGFA | C > T | rs833061 | 50/50 | Other | Linked: rs699947 | No |
VEGFA | T > C | rs833069 | 69/31 | Ranibizumab | Linked: rs2010963 | No |
VEGFA | A > G | rs879825 | 91/9 | Other | MAF: 91/9 | No |
VEGFA | T > C | rs9369421 | 91/9 | Other | Linked: rs879825 | No |
Variable | Ranibizumab Mean ± SD or n (%) | |
---|---|---|
Study | Control | |
Baseline Characteristics | ||
Total eyes (n) | 112 | 219 |
Mean age (years) | 57.5 ± 13.9 | 57.5 ± 15.1 |
Sex (Male:Female,%) | 25:75 | 32:68 |
Mean SERE (Diopters) | 12.1 ± 5.4 | 12.3 ± 4.9 |
Mean AL (mm) | 28.8 ± 2.1 | 28.3 ± 1.9 |
Affected eye | ||
RE | 61 (54.5) | |
LE | 51 (45.5) | |
CNV Location | ||
Subfoveal | 30 (26.8) | |
Juxtafoveal | 74 (66.1) | |
Extrafoveal | 8 (7.1) | |
Previous treatment | ||
None | 103 (92) | |
LP | 8 (7.1) | |
PDT | 1 (0.9) | |
BCVA (logMAR) at BL | 0.62 ± 0.48 | |
1-Month Follow-up Characteristics | ||
BCVA (logMAR) | 0.42 ± 0.41 | |
BCVA change (logMAR) | −0.21 ± 0.28 | |
BCVA improvement: | ||
Improvement | 75 (67.0) | |
Non improvement | 30 (26.8) | |
Worsening | 8 (7.1) | |
6-Month Follow-up Characteristics | ||
BCVA (logMAR) | 0.36 ± 0.36 | |
BCVA change (logMAR) | −0.26 ± 0.35 | |
BCVA improvement: | ||
Improvement | 80 (71.4) | |
Non improvement | 18 (16.1) | |
Worsening | 14 (12.5) |
SNP | TOTAL N = 215 | Control Group n = 116 | Study Group n = 99 | Control vs. Study | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Genotypes N (%) | MAF Allele: % | H-W | Genotypes n (%) | MAF Allele: % | H-W | Genotypes n (%) | MAF Allele: % | H-W | p-Value | |||||||
Wt | Het | Hom | Wt | Het | Hom | Wt | Het | Hom | ||||||||
CXCL8 A > T rs4073 | 52 (24.2) | 95 (44.2) | 68 (31.6) | A: 46.3 | 0.1 | 32 (27.6) | 43 (37.1) | 41 (35.3) | A: 46.1 | 0.01 | 20 (20.2) | 52 52.5) | 27 (27.3) | A: 46.5 | 0.69 | 0.075 |
NRP1 C > T rs2070296 | 132 (61.4) | 73 (34.0) | 10 (4.6) | T: 21.6 | 1 | 61 (52.6) | 47 (40.5) | 8 (6.9) | T: 27.2 | 1 | 71 (71.7) | 26 (26.3) | 2 (2.0) | T: 15.2 | 1 | 0.011 |
F13A1 C > A rs5985 | 133 (61.9) | 71 (33.0) | 11 (5.1) | A: 21.6 | 0.69 | 72 (62.1) | 36 (31.0) | 8 (6.9) | A: 22.4 | 0.28 | 61 (61.6) | 35 (35.4) | 3 (3.0) | A: 20.7 | 0.56 | 0.394 |
ARMS2 G > T rs10490924 | 123 (57.2) | 77 (35.8) | 15 (7.0) | T: 24.8 | 0.58 | 67 (57.8) | 42 (36.2) | 7 (6.0) | T: 24.1 | 1 | 56 (56.6) | 35 (35.4) | 8 (8.1) | T: 25.8 | 0.44 | 0.842 |
CFH C > T rs1061170 | 23 (10.7) | 83 (38.6) | 109 (50.7) | C: 30.0 | 0.26 | 12 (10.3) | 41 (35.3) | 63 (54.3) | C: 28.0 | 0.17 | 11 (11.1) | 42 (42.4) | 46 (46.5) | C: 32.3 | 0.82 | 0.504 |
VEGFA C > T rs25648 | 156 (72.5) | 50 (23.3) | 9 (4.2) | T: 15.8 | 0.07 | 85 (73.3) | 27 (23.3) | 4 (3.4) | T: 15.1 | 0.29 | 71 (71.7) | 23 (23.2) | 5 (5.1) | T: 16.7 | 0.14 | 0.841 |
VEGFA A > C rs699947 | 60 (27.9) | 94 (43.7) | 61 (28.4) | A: 49.8 | 0.08 | 32 (27.6) | 57 (49.1) | 27 (23.3) | C: 47.8 | 0.85 | 28 (28.3) | 37 (37.4) | 34 (34.3) | A: 47.0 | 0.02 | 0.135 |
VEGFA C > T rs3025000 | 122 (56.8) | 68 (31.6) | 25 (11.6) | T: 27.4 | <0.01 | 70 (60.3) | 38 (32.8) | 8 (6.9) | T: 23.3 | 0.43 | 52 (52.5) | 30 (30.3) | 17 (17.2) | T: 32.3 | <0.01 | 0.063 |
VEGFA A > G rs1570360 | 29 (13.5) | 87 (40.5) | 99 (46.0) | A: 33.7 | 0.17 | 16 (13.8) | 53 (45.7) | 47 (40.5) | A: 36.6 | 0.84 | 13 (13.1) | 34 (34.3) | 52 (52.5) | A: 30.3 | 0.06 | 0.184 |
VEGFA C > T rs3025040 | 164 (76.3) | 48 (22.3) | 3 (1.4) | T: 12.6 | 1 | 87 (75.0) | 27 (23.3) | 2 (1.7) | T: 13.4 | 1 | 77 (77.8) | 21 (21.2) | 1 (1.0) | T: 11.6 | 1 | 0.839 |
VEGFA C > G rs2010963 | 26 (12.1) | 76 (35.3) | 113 (52.6) | C: 29.8 | 0.03 | 64 (55.2) | 43 (37.1) | 9 (7.8) | C: 26.3 | 0.63 | 49 (49.5) | 33 (33.3) | 17 (17.2) | C: 33.8 | 0.01 | 0.108 |
(A) | |||||||||
SNP Major > Minor | Allele | IMPROVEMENT | WORSENING | ||||||
YES n (%) | NO n (%) | OR (95%CI) | p-Value | YES n (%) | NO n (%) | OR (95%CI) | p-Value | ||
1-Month Follow-Up | |||||||||
CXCL8 rs4073 A > T | A | 70 (46.7) | 34 (45.9) | 1.03 (0.57–1.87) | 0.919 | 9 (56.2) | 95 (45.7) | 1.53 (0.49–5.02) | 0.414 |
T | 80 (53.3) | 40 (54.1) | 7 (43.8) | 113 (54.3) | |||||
NRP1 rs2070296 C > T | T | 22 (14.7) | 12 (16.2) | 0.89 (0.39–2.11) | 0.761 | 1 (6.2) | 33 (15.9) | 0.35 (0.01–2.46) | 0.302 |
C | 128 (85.3) | 62 (83.8) | 15 (93.8) | 175 (84.1) | |||||
F13A1 rs5985 C > A | C | 118 (78.7) | 58 (78.4) | 1.02 (0.48–2.09) | 0.961 | 11 (68.8) | 165 (79.3) | 0.57 (0.17–2.23) | 0.320 |
A | 32 (21.3) | 16 (21.6) | 5 (31.2) | 43 (20.7) | |||||
ARMS2 rs10490924 G > T | G | 113 (75.3) | 54 (73.0) | 1.13 (0.57–2.22) | 0.703 | 13 (81.2) | 154 (74.0) | 1.52 (0.4–8.61) | 0.523 |
T | 37 (24.7) | 20 (27.0) | 3 (18.8) | 54 (26.0) | |||||
CFH rs1061170 C > T | C | 52 (34.7) | 18 (24.3) | 1.65 (0.85–3.3) | 0.116 | 1 (6.2) | 69 (33.2) | 0.13 (0–0.91) | 0.025 |
T | 98 (65.3) | 56 (75.7) | 15 (93.8) | 139 (66.8) | |||||
VEGFA rs3025040 C > T | C | 130 (86.7) | 68 (91.9) | 0.57 (0.18–1.57) | 0.251 | 14 (87.5) | 184 (88.5) | 0.91 (0.19–8.77) | 0.908 |
T | 20 (13.3) | 6 (8.1) | 2 (12.5) | 24 (11.5) | |||||
(B) | |||||||||
SNP Major > Minor | Allele | IMPROVEMENT | WORSENING | ||||||
YES n (%) | NO n (%) | OR (95%CI) | p-Value | YES n (%) | NO n (%) | OR (95%CI) | p-Value | ||
6-Months Follow-up | |||||||||
CXCL8 rs4073 A>T | A | 74 (46.8) | 30 (45.5) | 1.06 (0.57–1.96) | 0.850 | 13 (46.4) | 91 (46.4) | 1 (0.41–2.39) | 1 |
T | 84 (53.2) | 36 (54.5) | 15 (53.6) | 105 (53.6) | |||||
NRP1 rs2070296 C>T | T | 27 (17.1) | 7 (10.6) | 1.74 (0.69–4.99) | 0.218 | 3 (10.7) | 31 (15.8) | 0.64 (0.12–2.3) | 0.482 |
C | 131 (82.9) | 59 (89.4) | 25 (89.3) | 165 (84.2) | |||||
F13A1 rs5985 C>A | C | 125 (79.1) | 51 (77.3) | 1.11 (0.52–2.32) | 0.760 | 23 (82.1) | 153 (78.1) | 1.29 (0.44–4.61) | 0.623 |
A | 33 (20.9) | 15 (22.7) | 5 (17.9) | 43 (21.9) | |||||
ARMS2 rs10490924 G>T | G | 124 (78.5) | 43 (65.2) | 1.95 (0.98–3.83) | 0.037 | 17 (60.7) | 150 (76.5) | 0.47 (0.19–1.21) | 0.073 |
T | 34 (21.5) | 23 (34.8) | 11 (39.3) | 46 (23.5) | |||||
CFH rs1061170 C>T | C | 55 (34.8) | 15 (22.7) | 1.82 (0.9–3.8) | 0.075 | 7 (25) | 63 (32.1) | 0.7 (0.24–1.84) | 0.446 |
T | 103 (65.2) | 51 (77.3) | 21 (75) | 133 (67.9) | |||||
VEGFA rs3025040 C>T | C | 140 (88.6) | 58 (87.9) | 1.07 (0.38–2.77) | 0.877 | 23 (82.1) | 175 (89.3) | 0.55 (0.18–2.06) | 0.270 |
T | 18 (11.4) | 8 (12.1) | 5 (17.9) | 21 (10.7) |
(A) | ||||||||
SNP | Genotype | IMPROVEMENT | ||||||
YES n (%) | NO n (%) | Genetic Model (Reference) | OR (95%CI) | p-Value | AIC | BIC | ||
ARMS2 rs10490924 G>T | G/G | 45 (59.2) | 18 (50) | Codominant (GG) a | 1.77 (0.77–4.05) | 0.160 | 143 | 151.2 |
T/G | 24 (31.6) | 17 (47.2) | Codominant (GG) b | 0.36 (0.04–3.11) | ||||
T/T | 7 (9.2) | 1 (2.8) | Dominant (GG) | 1.45 (0.65–3.22) | 0.360 | 143.8 | 149.3 | |
Recessive (TT) | 3.55 (0.42–30.01) | 0.180 | 142.9 | 148.3 | ||||
Overdominant (TG) | 0.52 (0.23–1.16) | 0.110 | 142.1 | 147.6 | ||||
Log-additive | 0.93 (0.50–1.75) | 0.830 | 144.6 | 150 | ||||
CFH rs1061170 C > T | T/T | 32 (42.1) | 21 (58.3) | Codominant (TT) c | 0.57 (0.24–1.31) | 0.230 | 143.7 | 151.8 |
T/C | 35 (46) | 13 (36.1) | Codominant (TT) d | 0.34 (0.07–1.72) | ||||
C/C | 9 (11.8) | 2 (5.6) | Dominant (TT) | 0.52 (0.23–1.16) | 0.110 | 142.1 | 147.5 | |
Recessive (CC) | 2.28 (0.47–11.16) | 0.270 | 143.5 | 148.9 | ||||
Overdominant (TC) | 1.51 (0.67–3.42) | 0.320 | 143.7 | 149.1 | ||||
Log-additive | 1.74 (0.91–3.33) | 0.084 | 141.7 | 147.1 | ||||
SNP | Genotype | WORSENING | ||||||
YES n (%) | NO n (%) | Genetic Model | OR (95%CI) | p-Value | AIC | BIC | ||
ARMS2 rs10490924 G > T | G/G | 5 (62.5) | 58 (55.8) | Codominant (GG) a | 1.09 (0.25–4.84) | 0.540 | 62.4 | 70.5 |
T/G | 3 (37.5) | 38 (36.5) | Codominant (GG) b | NA (0.00–NA) | ||||
T/T | 0 (0) | 8 (7.7) | Dominant (GG) | 1.32 (0.30–5.82) | 0.710 | 61.5 | 66.9 | |
Recessive (TT) | 0.00 (0.00–NA) | 0.270 | 60.4 | 65.8 | ||||
Overdominant (TG) | 1.04 (0.24–4.61) | 0.960 | 61.6 | 67.1 | ||||
Log-additive | 0.67 (0.19–2.39) | 0.520 | 61.2 | 66.7 | ||||
CFH rs1061170 C > T | T/T | 7 (87.5) | 46 (44.2) | Codominant (TT) c | 7.15 (0.85–60.45) | 0.038 | 57.1 | 65.3 |
T/C | 1 (12.5) | 47 (45.2) | Codominant (TT) d | NA (0.00–NA) | ||||
C/C | 0 (0) | 11 (10.6) | Dominant (TT) | 8.83 (1.05–74.30) | 0.013 | 55.5 | 60.9 | |
Recessive (CC) | 0.00 (0.00–NA) | 0.190 | 59.9 | 65.4 | ||||
Overdominant (TC) | 0.17 (0.02–1.46) | 0.053 | 57.9 | 63.3 | ||||
Log-additive | 0.13 (0.02–1.03) | 0.011 | 55.2 | 60.6 | ||||
(B) | ||||||||
SNP | Genotype | IMPROVEMENT | ||||||
YES n (%) | NO n (%) | Genetic Model (Reference) | OR (95%CI) | p-Value | AIC | BIC | ||
ARMS2 rs10490924 G > T | G/G | 50 (62.5) | 13 (40.6) | Codominant (GG) a | 2.46 (1.03–5.91) | 0.110 | 135.6 | 143.7 |
G/T | 25 (31.2) | 16 (50) | Codominant (GG) b | 2.31 (0.49–10.94) | ||||
T/T | 5 (6.2) | 3 (9.4) | Dominant (GG) | 2.44 (1.05–5.63) | 0.035 | 133.6 | 139 | |
Recessive (TT) | 0.64 (0.14–2.87) | 0.570 | 137.7 | 143.1 | ||||
Overdominant (GT) | 0.45 (0.20–1.05) | 0.065 | 134.6 | 140.1 | ||||
Log-additive | 1.85 (0.97–3.51) | 0.060 | 134.5 | 139.9 | ||||
CFH rs1061170 C > T | T/T | 34 (42.5) | 19 (59.4) | Codominant (TT) c | 0.66 (0.28–1.55) | 0.012 | 131.2 | 139.4 |
T/C | 35 (43.8) | 13 (40.6) | Codominant (TT) d | 0.00 (0.00–NA) | ||||
C/C | 11 (13.8) | 0 (0) | Dominant (TT) | 0.51 (0.22–1.16) | 0.110 | 135.4 | 140.8 | |
Recessive (CC) | NA (0.00–NA) | 0.005 | 130.1 | 135.6 | ||||
Overdominant (CT) | 1.14 (0.49–2.61) | 0.76 | 137.9 | 143.4 | ||||
Log-additive | 0.45 (0.22–0.92) | 0.021 | 132.7 | 138.2 | ||||
SNP | Genotype | WORSENING | ||||||
YES n (%) | NO n (%) | Genetic Model | OR (95%CI) | p-Value | AIC | BIC | ||
ARMS2 rs10490924 G > T | G/G | 4 (28.6) | 59 (60.2) | Codominant (GG) a | 0.24 (0.07–0.84) | 0.067 | 85 | 93.1 |
G/T | 9 (64.3) | 32 (32.6) | Codominant (GG) b | 0.47 (0.05–4.86) | ||||
T/T | 7 (7.1) | 1 (7.1) | Dominant (GG) | 0.26 (0.08–0.90) | 0.025 | 83.4 | 88.8 | |
Recessive (TT) | 1.00 (0.11–11.80) | 1 | 88.4 | 93.8 | ||||
Overdominant (GT) | 3.71 (1.15–11.98) | 0.024 | 83.3 | 88.8 | ||||
Log-additive | 0.48 (0.21–1.11) | 0.089 | 85.5 | 90.6 | ||||
CFH rs1061170 C > T | T/T | 7 (50) | 46 (46.9) | Codominant (TT) c | 0.89 (0.29–2.76) | 0.21 | 87.3 | 95.4 |
T/C | 7 (50) | 41 (41.8) | Codominant (TT) d | NA (0.00–NA) | ||||
C/C | 0 (0) | 11 (11.2) | Dominant (TT) | 1.13 (0.37–3.47) | 0.83 | 88.4 | 93.8 | |
Recessive (CC) | 0.00 (0.00–NA) | 0.078 | 85.3 | 90.7 | ||||
Overdominant (CT) | 1.39 (0.45–4.27) | 0.570 | 88.1 | 93.5 | ||||
Log-additive | 1.42 (0.57–3.52) | 0.440 | 87.8 | 93.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Blánquez-Martínez, D.; Díaz-Villamarín, X.; Antúnez-Rodríguez, A.; Pozo-Agundo, A.; Muñoz-Ávila, J.I.; Martínez-González, L.J.; Dávila-Fajardo, C.L. Genetic Polymorphisms Affecting Ranibizumab Response in High Myopia Patients. Pharmaceutics 2021, 13, 1973. https://doi.org/10.3390/pharmaceutics13111973
Blánquez-Martínez D, Díaz-Villamarín X, Antúnez-Rodríguez A, Pozo-Agundo A, Muñoz-Ávila JI, Martínez-González LJ, Dávila-Fajardo CL. Genetic Polymorphisms Affecting Ranibizumab Response in High Myopia Patients. Pharmaceutics. 2021; 13(11):1973. https://doi.org/10.3390/pharmaceutics13111973
Chicago/Turabian StyleBlánquez-Martínez, David, Xando Díaz-Villamarín, Alba Antúnez-Rodríguez, Ana Pozo-Agundo, José Ignacio Muñoz-Ávila, Luis Javier Martínez-González, and Cristina Lucía Dávila-Fajardo. 2021. "Genetic Polymorphisms Affecting Ranibizumab Response in High Myopia Patients" Pharmaceutics 13, no. 11: 1973. https://doi.org/10.3390/pharmaceutics13111973
APA StyleBlánquez-Martínez, D., Díaz-Villamarín, X., Antúnez-Rodríguez, A., Pozo-Agundo, A., Muñoz-Ávila, J. I., Martínez-González, L. J., & Dávila-Fajardo, C. L. (2021). Genetic Polymorphisms Affecting Ranibizumab Response in High Myopia Patients. Pharmaceutics, 13(11), 1973. https://doi.org/10.3390/pharmaceutics13111973